leukotriene-b4 has been researched along with Orthomyxoviridae-Infections* in 5 studies
5 other study(ies) available for leukotriene-b4 and Orthomyxoviridae-Infections
Article | Year |
---|---|
Leukotriene B4 Enhances NOD2-Dependent Innate Response against Influenza Virus Infection.
Leukotriene B4 (LTB4), a central mediator of inflammation, is well known for its chemoattractant properties on effectors cells of the immune system. LTB4 also has the ability to control microbial infection by improving host innate defenses through the release of antimicrobial peptides and modulation of intracellular Toll-like receptors (TLRs) expression in response to agonist challenge. In this report, we provide evidences that LTB4 acts on nucleotide-binging oligomerization domain 2 (NOD2) pathway to enhance immune response against influenza A infection. Infected mice receiving LTB4 show improved survival, lung architecture and reduced lung viral loads as compared to placebo-treated animals. NOD2 and its downstream adaptor protein IPS-1 have been found to be essential for LTB4-mediated effects against IAV infection, as absence of NOD2 or IPS-1 diminished its capacity to control viral infection. Treatment of IAV-infected mice with LTB4 induces an increased activation of IPS-1-IRF3 axis leading to an enhanced production of IFNβ in lungs of infected mice. LTB4 also has the ability to act on the RICK-NF-κB axis since administration of LTB4 to mice challenged with MDP markedly increases the secretion of IL-6 and TNFα in lungs of mice. TAK1 appears to be essential to the action of LTB4 on NOD2 pathway since pretreatment of MEFs with TAK1 inhibitor prior stimulation with IAV or MDP strongly abrogated the potentiating effects of LTB4 on both IFNβ and cytokine secretion. Together, our results demonstrate that LTB4, through its ability to activate TAK1, potentiates both IPS-1 and RICK axis of the NOD2 pathway to improve host innate responses. Topics: Adaptor Proteins, Signal Transducing; Animals; Immunity, Innate; Inflammation; Interferon Regulatory Factor-3; Interferon-beta; Interleukin-6; Leukotriene B4; Lipopolysaccharides; Lung; MAP Kinase Kinase Kinases; Mice; Mice, Inbred C57BL; NF-kappa B; Nod2 Signaling Adaptor Protein; Orthomyxoviridae; Orthomyxoviridae Infections; Signal Transduction | 2015 |
A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation.
Leukotriene A(4) hydrolase (LTA(4)H) is a proinflammatory enzyme that generates the inflammatory mediator leukotriene B(4) (LTB(4)). LTA(4)H also possesses aminopeptidase activity with unknown substrate and physiological importance; we identified the neutrophil chemoattractant proline-glycine-proline (PGP) as this physiological substrate. PGP is a biomarker for chronic obstructive pulmonary disease (COPD) and is implicated in neutrophil persistence in the lung. In acute neutrophil-driven inflammation, PGP was degraded by LTA(4)H, which facilitated the resolution of inflammation. In contrast, cigarette smoke, a major risk factor for the development of COPD, selectively inhibited LTA(4)H aminopeptidase activity, which led to the accumulation of PGP and neutrophils. These studies imply that therapeutic strategies inhibiting LTA(4)H to prevent LTB(4) generation may not reduce neutrophil recruitment because of elevated levels of PGP. Topics: Acetylation; Animals; Bronchoalveolar Lavage Fluid; Cells, Cultured; Chemokines, CXC; Chemotaxis, Leukocyte; Epoxide Hydrolases; Female; Humans; Inflammation; Leukotriene B4; Lung; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Neutrophils; Nicotiana; Oligopeptides; Orthomyxoviridae Infections; Pneumococcal Infections; Pneumonia; Proline; Pulmonary Disease, Chronic Obstructive; Smoke | 2010 |
Medicine. Neutrophils find smoke attractive.
Topics: Acetylation; Animals; Chemokines, CXC; Chemotaxis, Leukocyte; Epoxide Hydrolases; Humans; Inflammation; Leukotriene B4; Lung; Mice; Neutrophil Activation; Neutrophils; Nicotiana; Oligopeptides; Orthomyxoviridae Infections; Pneumococcal Infections; Pneumonia; Proline; Pulmonary Disease, Chronic Obstructive; Smoke | 2010 |
Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice.
Leukotriene B(4) (LTB(4)) is a lipid mediator of inflammation that was recently shown to exert antiviral activities. In this study, we demonstrate that the release of antimicrobial proteins by neutrophils contribute to an early host defense against influenza virus infection in vitro as well as in vivo. Daily i.v. treatments with LTB(4) lead to a significant decrease in lung viral loads at day 5 postinfection in mice infected with influenza A virus compared with the placebo-treated group. This reduction in viral load was not present in mice deficient in the high-affinity LTB(4) receptor. Viral clearance in lungs was associated with up-regulated presence of antimicrobial peptides such as beta-defensin-3, members of the mouse eosinophil-related RNase family, and the mouse cathelicidin-related antimicrobial peptide. Our results also indicate that neutrophils are important in the antiviral effect of LTB(4). Viral loads in neutrophil-depleted mice were not diminished by LTB(4) administration, and a substantial reduction in the presence of murine cathelicidin-related antimicrobial peptide and the murine eosinophil-related RNase family in lung tissue was observed. Moreover, in vitro treatment of human neutrophil cultures with LTB(4) led rapidly to the secretion of the human cathelicidin LL-37 and eosinophil-derived neurotoxin, known as antiviral peptides. Pretreatment of cell cultures with specific LTB(4) receptor antagonists clearly demonstrate the implication of the high-affinity LTB(4) receptor in the LTB(4)-mediated activity. Together, these results demonstrate the importance of neutrophils and the secretion of antimicrobial peptides during the early immune response mediated by LTB(4) against a viral pathogen. Topics: Animals; Antimicrobial Cationic Peptides; Eosinophil-Derived Neurotoxin; Humans; Influenza A Virus, H1N1 Subtype; Leukotriene B4; Lung; Mice; Mice, Knockout; Neutrophils; Orthomyxoviridae Infections; Receptors, Leukotriene B4; Up-Regulation; Viral Load | 2008 |
A kinetic study of immune mediators in the lungs of mice infected with influenza A virus.
We investigated a broad spectrum of immunoactive mediators in a mouse model of influenza. ICR mice (4-5 wk old) that were infected with a 10 LD50 dose of influenza A/PR8/34 virus died after 6 days without evidence of bacterial superinfection. Maximal virus titers were reached by day 2 postinfection, whereas the multifocal pneumonia with mononuclear cell infiltration reached its maximum at the end of infection. We measured the cytokines IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-6, IFN-gamma, TNF-alpha, granulocyte (G)/macrophage (M)-CSF, G-CSF, M-CSF, and the lipid mediators leukotriene B4 and platelet-activating factor in the cellfree bronchoalveolar lavage fluid of mice during infection. We found an early increase of IL-1 alpha, IL-1 beta, IL-6, TNF-alpha, GM-CSF, IFN-gamma, and leukotriene B4. Levels of these factors peaked between 36 h and day 3 postinfection, with the exception of IL-6 that remained at elevated levels throughout infection. G-CSF and M-CSF increased slowly and reached a maximum by day 5 postinfection. We were unable to detect IL-2, IL-3, or IL-4. PAF remained at the same level throughout infection. Our results suggest that lung-resident cells, and possibly the alveolar macrophages, participate actively in the onset of the inflammatory response against the invading virus. The inability to detect the T cell products IL-2, IL-3, and IL-4 was unexpected considering the role of T cells in the elimination of the virus in infected mice. Our observation confirms thus earlier findings about the inability of specific T cell clones to elicit an unspecific antiviral effect. Topics: Animals; Bronchoalveolar Lavage Fluid; Cytokines; Influenza A virus; Leukotriene B4; Mice; Orthomyxoviridae Infections; Platelet Activating Factor; Time Factors | 1992 |