leukotriene-b4 has been researched along with Myocardial-Ischemia* in 5 studies
5 other study(ies) available for leukotriene-b4 and Myocardial-Ischemia
Article | Year |
---|---|
Cooperative role of endogenous leucotrienes and platelet-activating factor in ischaemia-reperfusion-mediated tissue injury.
Insufficient oxygen delivery to organs leads to tissue dysfunction and cell death. Reperfusion, although vital to organ survival, initiates an inflammatory response that may both aggravate local tissue injury and elicit remote organ damage. Polymorphonuclear neutrophil (PMN) trafficking to remote organs following ischaemia/reperfusion (I/R) is associated with the release of lipid mediators, including leucotriene (LT) B4 , cysteinyl-LTs (CysLTs) and platelet-activating factor (PAF). Yet, their potentially cooperative role in regulating I/R-mediated inflammation has not been thoroughly assessed. The present study aimed to determine the cooperative role of lipid mediators in regulating PMN migration, tissue oedema and injury using selective receptor antagonists in selected models of I/R and dermal inflammation. Our results show that rabbits, pre-treated orally with BIIL 284 and/or WEB 2086 and MK-0571, were protected from remote tissue injury following I/R or dermal inflammation in an additive or synergistic manner when the animals were pre-treated with two drugs concomitantly. The functional selectivity of the antagonists towards their respective agonists was assessed in vitro, showing that neither BIIL 284 nor WEB 2086 prevented the inflammatory response to IL-8, C5a and zymosan-activated plasma stimulation. However, these agonists elicited LTB4 biosynthesis in isolated rabbit PMNs. Similarly, a cardioprotective effect of PAF and LTB4 receptor antagonists was shown following myocardial I/R in mice. Taken together, these results underscore the intricate involvement of LTB4 and PAF in each other's responses and provide further evidence that targeting both LTs and PAF receptors provides a much stronger anti-inflammatory effect, regulating PMN migration and oedema formation. Topics: Amidines; Animals; Azepines; Biological Assay; Carbamates; Dermis; Disease Models, Animal; Extravasation of Diagnostic and Therapeutic Materials; Extremities; Inflammation; Leukotriene B4; Leukotrienes; Male; Mice; Mice, Inbred C57BL; Myocardial Ischemia; Neutrophil Infiltration; Platelet Activating Factor; Platelet Membrane Glycoproteins; Propionates; Quinolines; Rabbits; Receptors, G-Protein-Coupled; Receptors, Leukotriene; Reperfusion Injury; Triazoles | 2013 |
Elevated level of pro-inflammatory eicosanoids and EPC dysfunction in diabetic patients with cardiac ischemia.
Circulating endothelial progenitor cells (EPCs) are recruited from the blood system to sites of ischemia and endothelial damage, where they contribute to the repair and development of blood vessels. Since numerous eicosanoids including leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) have been shown to exert potent pro-inflammatory activities, we examined their levels in chronic diabetic patients with severe cardiac ischemia in conjunction with the level and function of EPCs.. Lipidomic analysis revealed a diabetes-specific increase (p<0.05) in inflammatory and angiogenic eicosanoids including the 5-lipoxygenase-derived LTB (4.11±1.17 vs. 0.96±0.27 ng/ml), the lipoxygenase/CYP-derived 12-HETE (117.08±35.05 vs. 24.34±10.03 ng/ml), 12-HETrE (17.56±4.43 vs. 4.15±2.07 ng/ml), and the CYP-derived 20-HETE (0.32±0.04 vs. 0.06±0.05 ng/ml) the level of which correlated with BMI (p=0.0027). In contrast, levels of the CYP-derived EETs were not significantly (p=0.36) different between these two groups. EPC levels and their colony-forming units were lower (p<0.05) with a reduced viability in diabetic patients compared with non-diabetics. EPC function (colony-forming units (CFUs) and MTT assay) also negatively correlated with the circulating levels of HgA1C.. This study demonstrates a close association between elevated levels of highly pro-inflammatory eicosonoids, diabetes and EPC dysfunction in patients with cardiac ischemia, indicating that chronic inflammation impact negatively on EPC function and angiogenic capacity in diabetes. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; AC133 Antigen; Aged; Antigens, CD; Body Mass Index; Cell Survival; Chromatography, Liquid; Diabetes Mellitus; Eicosanoids; Endothelial Cells; Female; Flow Cytometry; Glycoproteins; Humans; Hydroxyeicosatetraenoic Acids; Leukotriene B4; Lipids; Male; Middle Aged; Myocardial Ischemia; Peptides; Stem Cells; Tandem Mass Spectrometry; Vascular Endothelial Growth Factor Receptor-2 | 2013 |
The lipoxygenase-cyclooxygenase inhibitor licofelone prevents thromboxane A2-mediated cardiovascular derangement triggered by the inflammatory peptide fMLP in the rabbit.
Licofelone is an analogue of arachidonic acid that inhibits 5-lipoxygenase (LOX), cyclooxygenase (COX)-1 and COX-2. We investigated the effects of licofelone on cardiovascular derangements and production of thromboxane (Tx)A(2) induced by the inflammatory agonist n-formyl-methionyl-leucyl-phenylalanine (fMLP) in the rabbit, in comparison with those of aspirin or rofecoxib, inhibitors of COX-1 and COX-2, respectively. In control rabbits, injection of fMLP (30 nmol/kg) in the jugular vein evokes ischemic electrocardiographic (ECG) changes in the first 1-5 min, i.e. a profound depression of the ST segment and inversion of the T wave. Simultaneously, fMLP induces bradycardia and hypotension and increases TxB(2) blood levels. All changes are transient. Licofelone (60 mg/kg/5 days, p.os) prevented fMLP-induced ECG ischemic changes in all treated animals, reverted bradycardia and hypotension, and significantly reduced TxB(2). Aspirin (10 mg/kg/5 days, p.os) prevented ischemic ECG alterations in 2 out of 5 treated animals and did not modify either bradycardia or hypotension. One rabbit died two min after fMLP. In 2 rabbits, aspirin reduced TxB(2) levels by more than 80% respect to mean control values; the remaining two rabbits produced an amount of TxB(2) similar to controls. These two rabbits also showed ischemic ECG changes. Rofecoxib (10 mg/kg/5 days, p.os) did not prevent fMLP-induced ischemic ECG alteration, bradycardia and hypotension, and did not significantly modify the increase of TxB(2). These results indicate that the capacity of licofelone to efficiently suppress TxA(2) production, is responsible for the protection from the cardiovascular derangement triggered by an inflammatory stimulus. Topics: Acetates; Animals; Aspirin; Blood Pressure; Cyclooxygenase Inhibitors; Disease Models, Animal; Electrocardiography; Heart Rate; Inflammation; Lactones; Leukotriene B4; Lipoxygenase Inhibitors; Male; Myocardial Ischemia; N-Formylmethionine Leucyl-Phenylalanine; Pyrroles; Rabbits; Sulfones; Thromboxane A2; Time Factors | 2006 |
Cardioprotection by a novel recombinant serine protease inhibitor in myocardial ischemia and reperfusion injury.
Polymorphonuclear neutrophils (PMN) play an important role in myocardial ischemia/reperfusion (MI/R) injury; however, the role of neutrophilic proteases is less understood. The effects of a novel serine protease inhibitor (serpin), LEX032, were investigated in a murine model of MI (20 min) and R (24 hr) injury in vivo. LEX032 is a recombinant human alpha 1-antichymotrypsin in which six amino acid residues were replaced around the active center with those of alpha-1 protease inhibitor. LEX032 has the ability to inhibit both neutrophil elastase and cathepsin G, two major neutral serine proteases in neutrophils, as well as superoxide generation. LEX032 (25 or 50 mg/kg) administered i.v. 1 min before reperfusion significantly attenuated myocardial necrotic injury evaluated by cardiac creatine kinase loss compared to MI/R rats receiving only vehicle (P < .001). Moreover, cardiac myeloperoxidase activity, an index of PMN accumulation, in the ischemic myocardium was significantly attenuated by LEX032 as compared with rats receiving vehicle (P < .001). LEX032 also moderately attenuated leukotriene B4-stimulated PMN adherence to rat superior mesenteric artery endothelium and markedly diminished superoxide radical release from LTB4-stimulated PMN in vitro. In a glycogen-induced rat peritonitis model, LEX032 (50 mg/kg) significantly attenuated PMN transmigration into the peritoneal cavity in vivo. In conclusion, the recombinant serine protease inhibitor, LEX032, appears to be an effective agent for attenuating MI/R injury by inhibiting neutrophil-accumulation into the ischemic-reperfused myocardium and by inactivating cytotoxic metabolites (proteases and superoxide radical) released from neutrophils. Topics: Animals; Cell Adhesion; Chemotaxis, Leukocyte; Creatine Kinase; Endothelium, Vascular; Glycogen; Interleukin-1; Leukotriene B4; Male; Muscle, Smooth, Vascular; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Neutrophils; Peritoneal Cavity; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Serine Proteinase Inhibitors; Serpins; Superoxides | 1995 |
Trimetazidine inhibits neutrophil accumulation after myocardial ischaemia and reperfusion in rabbits.
Interventions that inhibit neutrophil infiltration into myocardial tissue after ischaemia and reperfusion are reported to reduce the size of the infarct. We examined whether administration of trimetazidine, which is reported to reduce myocardial infarct size, affects this process. [111In]Neutrophils and [125I]albumin were administered intravenously (i.v.) to anaesthetized rabbits to allow measurement of cell accumulation and changes in microvascular plasma protein leakage. A 30-min period of coronary artery occlusion followed by 3-h reperfusion was used, and the area at risk (AR) myocardium was defined by dye exclusion. Twelve rabbits received 2.5 mg/kg trimetazidine i.v., 10 min before coronary artery occlusion; the 13 controls received saline. In the control group, the number of [111In]neutrophils/g tissue in the AR (30,591 +/- 6,725) was significantly greater than in the normal zone (NZ, 11,519 +/- 1,605, p < 0.01). In the trimetazidine-treated group, the number of [111In]neutrophils in the AR was significantly lower than in the control group (12,717 +/- 1,958 [111In]neutrophils/g, p < 0.01). There was no significant difference in neutrophil content of the NZ (7,832 +/- 1,117 [111In]neutrophils/g) in treated animals as compared with that in control. Accumulation of [111In]neutrophils in response to intradermal administration of leukotriene B4, interleukin-8 (IL-8), or zymosan-activated plasma was not affected by the drug. The effect of trimetazidine on neutrophil accumulation into post-ischaemic reperfused myocardium therefore does not appear to result from a direct action on the neutrophil. Topics: Animals; Blood Pressure; Capillary Permeability; Disease Models, Animal; Heart Rate; Interleukin-8; Leukotriene B4; Male; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Neutrophils; Rabbits; Trimetazidine; Zymosan | 1993 |