leukotriene-b4 has been researched along with Mouth-Neoplasms* in 5 studies
5 other study(ies) available for leukotriene-b4 and Mouth-Neoplasms
Article | Year |
---|---|
Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster cheek pouch carcinogenesis by a 5-lipoxygenase inhibitor, garcinol.
Our previous studies have shown that aberrant arachidonic acid metabolism, especially the 5-lipoxygenase (5-Lox) pathway, is involved in oral carcinogenesis and can be targeted for cancer prevention. To develop potent topical agents for oral cancer chemoprevention, 5 known 5-Lox inhibitors from dietary and synthetic sources (Zileuton, ABT-761, licofelone, curcumin, and garcinol) were evaluated in silico for their potential efficacy. Garcinol, a polyisoprenylated benzophenone from the fruit rind of Garcinia spp., was found to be a promising agent based on the calculation of a theoretical activity index. Computer modeling showed that garcinol well fit the active site of 5-Lox, and potentially inhibited enzyme activity through interactions between the phenolic hydroxyl groups and the non-heme catalytic iron. In a short-term study on 7,12-dimethylbenz[a]anthracene (DMBA)-treated hamster cheek pouch, topical garcinol suppressed leukotriene B4 (LTB4) biosynthesis and inhibited inflammation and cell proliferation in the oral epithelium. In a long-term carcinogenesis study, topical garcinol significantly reduced the size of visible tumors, the number of cancer lesions, cell proliferation, and LTB4 biosynthesis. These results demonstrated that topical application of a 5-Lox inhibitor, garcinol, had chemopreventive effect on DMBA-induced hamster cheek pouch carcinogenesis. Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Anticarcinogenic Agents; Carcinogens; Cell Proliferation; Cheek; Cricetinae; Leukotriene B4; Lipoxygenase Inhibitors; Male; Mesocricetus; Mouth Neoplasms; Plant Extracts; Terpenes | 2012 |
Ethanol promotes chemically induced oral cancer in mice through activation of the 5-lipoxygenase pathway of arachidonic acid metabolism.
Alcohol drinking is a known risk factor for oral cancer in humans. However, previous animal studies on the promoting effect of ethanol on oral carcinogenesis were inconclusive. It is necessary to develop an animal model with which the molecular mechanism of ethanol-related oral carcinogenesis may be elucidated to develop effective prevention strategies. In this study, mice were first treated with 4-nitroquinoline-1-oxide (4NQO, 100 μg/mL in drinking water) for 8 weeks and then given water or ethanol (8%) as the sole drink for another 16 weeks. During the experiment, 8% ethanol was well tolerated by mice. The incidence of squamous cell carcinoma (SCC) increased from 20% (8/41) to 43% (17/40; P < 0.05). Expression of 5-lipoxygenase (5-Lox) and cyclooxygenase 2 (Cox-2) was increased in dysplasia and SCC of 4NQO-treated tongues and further enhanced by ethanol. Using this mouse model, we further showed that fewer cancers were induced in Alox5(-/-) mice, as were cell proliferation, inflammation, and angiogenesis in the tongue, as compared with Alox5(+/+) mice. Interestingly, Cox-2 expression was induced by ethanol in knockout mice, whereas 5-Lox and leukotriene A4 hydrolase (LTA4H) expression and leukotriene B4 (LTB4) biosynthesis were dramatically reduced. Moreover, ethanol enhanced expression and nuclear localization of 5-Lox and stimulated LTB4 biosynthesis in human tongue SCC cells (SCC-15 and SCC-4) in vitro. In conclusion, this study clearly showed that ethanol promoted 4NQO-induced oral carcinogenesis, at least in part, through further activation of the 5-Lox pathway of arachidonic acid metabolism. Topics: 4-Nitroquinoline-1-oxide; Animals; Anti-Infective Agents, Local; Arachidonate 5-Lipoxygenase; Arachidonic Acid; Blotting, Western; Carcinogens; Carcinoma, Squamous Cell; Cells, Cultured; Cocarcinogenesis; Cyclooxygenase 2; Drinking Water; Epoxide Hydrolases; Ethanol; Humans; Immunoenzyme Techniques; Leukotriene B4; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mouth Neoplasms; Signal Transduction; Tongue Neoplasms | 2011 |
[Chemopreventive effect of boswellic acid and curcumin on 7,12-dimethyl benzanthracene-induced hamster cheek pouch carcinogenesis].
To evaluate the chemopreventive effects of boswellic acid and curcumin on 7,12-dimethyl benzanthracene(DMBA)-induced oral carcinogenesis in the hamster cheek pouch model.. Male Syrian golden hamsters (6 - 8 weeks old, 80 - 130 g in weight) were randomly divided into seven groups, with group A serving as the untreated negative control. The left cheek pouch of the remaining hamsters was topically treated with 0.5% DMBA in mineral oil three times a week for 6 weeks. They were then randomized to six groups with group B serving as a positive control and receiving no further treatment. Groups C-G were treated topically with 5, 10 mg/L boswellic acid, 5, 10 µmol/L curcumin, or the combination of 5 mg/L boswellic acid and 5 µmol/L curcumin three times per week for 18 weeks. The animals were injected with bromodeoxyuridine intraperitoneally at 50 mg/kg 2 h prior to killing. At the 25 th week all the hamsters were sacrificed and cheek pouch tissue was harvested. One half of the tissue was snap frozen in liquid nitrogen for analysis of arachidonic acid metabolites, and the other half was fixed in 10% phosphate-buffered saline(PBS)-buffered formalin for histopathological examination.. Six-weeks of DMBA followed by 18-weeks of topical application of boswellic acid and curcumin, both boswellic acid (5, 10 mg/L) and curcumin (5, 10 µmol/L) significantly inhibited the incidence from 93.8% to 73.9% (P > 0.05), numbers from 2.19 ± 0.98 to 1.13 ± 0.81 (P < 0.01) and size of visible tumors. Microscopically the incidence of squamous cell carcinoma and BrdU index were also significantly suppressed by boswellic acid and curcumin.. Both boswellic acid and curcumin were effective in preventing oral carcinogenesis in DMBA-induced hamster cheek pouch model. Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Antineoplastic Agents; Bromodeoxyuridine; Carcinogenesis; Carcinogens; Carcinoma, Squamous Cell; Cheek; Cricetinae; Curcumin; Hyperplasia; Leukotriene B4; Male; Mesocricetus; Mouth Neoplasms; Precancerous Conditions; Random Allocation; Triterpenes | 2011 |
Zyflamend reduces LTB4 formation and prevents oral carcinogenesis in a 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced hamster cheek pouch model.
Aberrant arachidonic acid metabolism, especially altered cyclooxygenase and 5-lipoxygenase (LOX) activities, has been associated with chronic inflammation as well as carcinogenesis in human oral cavity tissues. Here, we examined the effect of Zyflamend, a product containing 10 concentrated herbal extracts, on development of 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced inflammation and oral squamous cell carcinoma (SCC). A hamster cheek pouch model was used in which 0.5% DMBA was applied topically onto the left cheek pouch of male Syrian golden hamsters either three times per week for 3 weeks (short term) or 6 weeks (long term). Zyflamend was then applied topically at one of three different doses (25, 50 and 100 microl) onto the left cheek pouch three times for 1 week (short-term study) or chronically for 18 weeks. Zyflamend significantly reduced infiltration of inflammatory cells, incidence of hyperplasia and dysplastic lesions, bromodeoxyuridine-labeling index as well as number of SCC in a concentration-dependent manner. Application of Zyflamend (100 microl) reduced formation of leukotriene B(4) (LTB(4)) by 50% compared with DMBA-treated tissues. The reduction of LTB(4) was concentration dependent. The effect of Zyflamend on inhibition of LTB(4) formation was further confirmed with in vitro cell-based assay. Adding LTB(4) to RBL-1 cells, a rat leukemia cell line expressing high levels of 5-LOX and LTA(4) hydrolase, partially blocked antiproliferative effect of Zyflamend. This study demonstrates that Zyflamend inhibited LTB(4) formation and modulated adverse histopathological changes in the DMBA-induced hamster cheek pouch model. The study suggests that Zyflamend might prevent oral carcinogenesis at the post-initiation stage. Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Anticarcinogenic Agents; Carcinogens; Cell Line, Tumor; Cell Proliferation; Cricetinae; Disease Models, Animal; Leukotriene B4; Mouth Neoplasms; Plant Extracts; Rats | 2008 |
Leukotriene B4 and oral cancer.
The quantitation of leukotriene B4 (LTB4) in induced squamous cell carcinoma (SCC) of the Syrian hamster cheek pouch and histologically proven human oral SCC was investigated by a combination of reverse phase-high performance liquid chromatography (RP-HPLC) and radioimmunoassay (RIA). Healthy tissue obtained from these same patients and animals treated with vehicle alone were used as controls. From both animal and human studies our results show a 10 to 30 fold increase in the levels of LTB4 found in tumour compared to control tissue. Furthermore, this dihydroxy acid was not detected in the mucosal tissue of normal subjects undergoing routine surgery. Since LTB4 is a potent inflammatory mediator and modulator of immune responses, its presence at biologically active concentrations in human squamous cell carcinoma suggests a possible role in the pathogenesis of head and neck cancer. Topics: 9,10-Dimethyl-1,2-benzanthracene; Adult; Aged; Aged, 80 and over; Animals; Biomarkers, Tumor; Carcinoma, Squamous Cell; Cricetinae; Female; Humans; Leukotriene B4; Male; Mesocricetus; Middle Aged; Mouth Mucosa; Mouth Neoplasms | 1990 |