leukotriene-b4 and Metabolism--Inborn-Errors

leukotriene-b4 has been researched along with Metabolism--Inborn-Errors* in 2 studies

Reviews

1 review(s) available for leukotriene-b4 and Metabolism--Inborn-Errors

ArticleYear
Developmental implications of ocular pharmacology.
    Pharmacology & therapeutics, 1985, Volume: 28, Issue:2

    Topics: Adult; Aged; Aging; Alcoholism; Amino Acids; Anesthetics, Local; Animals; Anti-Infective Agents; Anti-Inflammatory Agents; Aqueous Humor; Autonomic Nervous System; Biological Transport, Active; Brain Chemistry; Cardiac Glycosides; Catecholamines; Cell Differentiation; Central Nervous System; Diabetes Mellitus, Type 1; Diabetic Retinopathy; Epidermal Growth Factor; Eye; Fibrinolysis; Glaucoma; Granuloma; Graves Disease; Hallucinogens; Humans; Hypertension; Immunity, Cellular; Infant; Infant, Newborn; Leukotriene B4; Metabolism, Inborn Errors; Multiple Sclerosis; Muscle Relaxation; Nutritional Physiological Phenomena; Oxygen; Oxygen Consumption; Pigment Epithelium of Eye; Pineal Gland; Prostaglandin Antagonists; Prostaglandins; Psychotropic Drugs; Retina; Retinal Degeneration; Serotonin; Smoking; SRS-A; Stress, Physiological; Water-Electrolyte Balance

1985

Other Studies

1 other study(ies) available for leukotriene-b4 and Metabolism--Inborn-Errors

ArticleYear
Analysis of leukotrienes in cerebrospinal fluid of a reference population and patients with inborn errors of metabolism: further evidence for a pathognomonic profile in LTC(4)-synthesis deficiency.
    Clinica chimica acta; international journal of clinical chemistry, 2000, Feb-25, Volume: 292, Issue:1-2

    Cysteinyl leukotrienes (LTC(4), LTD(4), LTE(4)) are potent lipid mediators derived from arachidonate in the 5-lipoxygenase pathway. Recently, the first inborn error of leukotriene synthesis, LTC(4)-synthesis deficiency, has been identified in association with a fatal developmental syndrome. The absence of leukotrienes in cerebrospinal fluid was one of the most striking biochemical findings in this disorder. We analysed leukotrienes in cerebrospinal fluid of patients with a broad spectrum of other well-defined inborn errors of metabolism, including glutathione synthetase deficiency (n=2), Zellweger syndrome (n=3), mitochondrial disorders (n=8), fatty acid oxidation defects (n=7), organic acidurias (n=7), neurotransmitter defects (n=5) and patients with non-specific neurological symptoms, as a reference population (n=120). The concentrations of leukotrienes were not related to age. Representative percentiles were calculated as reference intervals of each leukotriene. In all patients with an inborn error of metabolism concentration of cysteinyl leukotrienes and LTB(4) did not differ from the reference group. Our results indicate that absence of cysteinyl leukotrienes (<5 pg/ml) in association with normal or increased LTB(4) (50.0-67.3 pg/ml) is pathognomonic for LTC(4)-synthesis deficiency. The unique profile of leukotrienes in cerebrospinal fluid in this new disorder is primarily related to the defect and represents a new diagnostic approach.

    Topics: Adolescent; Case-Control Studies; Child; Child, Preschool; Humans; Infant; Infant, Newborn; Leukotriene B4; Leukotriene C4; Leukotriene D4; Leukotriene E4; Leukotrienes; Metabolism, Inborn Errors; Reference Values

2000