leukotriene-b4 has been researched along with Gastrointestinal-Hemorrhage* in 4 studies
4 other study(ies) available for leukotriene-b4 and Gastrointestinal-Hemorrhage
Article | Year |
---|---|
Deleterious effects of high concentrations of (-)-epigallocatechin-3-gallate and atorvastatin in mice with colon inflammation.
Epigallocatechin-3-gallate (EGCG), atorvastatin (ATST), and their combination have been previously shown to inhibit colon carcinogenesis in animal models. We further investigated their inhibitory activities in azoxymethane (AOM) and dextran sulfate sodium (DSS)-treated Balb/cJ mice and CD-1 mice in 2 slightly different models. The mice were maintained on the AIN93M diet, or a similar diet containing 0.03%, 0.1%, or 0.3% EGCG; 60-ppm ATST; or a combination of 0.1% EGCG and 60-ppm ATST. Unexpectedly, no significant inhibitory activity was observed, and some of the treatment groups resulted in higher tumor multiplicity. To study the effects of EGCG on colon inflammation, CD-1 or C57BL/6 mice were treated with 1.5% DSS for 7 days and sacrificed 3 days later. DSS induced rectal bleeding and colon shortening; treatment with 0.5% EGCG exacerbated the bleeding and decreased mouse body weight. Dietary 0.5% EGCG also increased serum levels of leukotriene B4 and prostaglandin E2. These results suggest that, in mice bearing colon inflammation, high concentrations of EGCG and ATST enhance colon bleeding and may promote colon carcinogenesis. Topics: Animals; Atorvastatin; Azoxymethane; Catechin; Colitis; Colon; Colonic Neoplasms; Dextran Sulfate; Dinoprostone; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Gastrointestinal Hemorrhage; Heptanoic Acids; Leukotriene B4; Mice; Mice, Inbred C57BL; Mice, Inbred Strains; Pyrroles; Rectum; Weight Loss | 2012 |
Hemorrhage-induced intestinal damage is complement-independent in Helicobacter hepaticus-infected mice.
With more than half of the world population infected, Helicobacter infection is an important public health issue associated with gastrointestinal cancers and inflammatory bowel disease. Animal studies indicate that complement and oxidative stress play a role in Helicobacter infections. Hemorrhage (HS) induces tissue damage that is attenuated by blockade of either complement activation or oxidative stress products. Therefore, we hypothesized that chronic Helicobacter hepaticus infection would modulate HS-induced intestinal damage and inflammation. To test this hypothesis, we examined HS-induced jejunal damage and inflammation in uninfected and H. hepaticus-infected mice. Helicobacter hepaticus infection increased HS-induced midjejunal mucosal damage despite attenuating complement activation. In addition, infection alone increased chemokine secretion, changing the HS-induced neutrophil infiltration to a macrophage-mediated inflammatory response. The HS-induced macrophage infiltration correlated with increased secretion of tumor necrosis factor-α and nitric oxide in the infected mice. Together, these data indicate that Helicobacter infection modulates the mechanism of HS-induced intestinal damage and inflammation from a complement-mediated response to a macrophage response with elevated tumor necrosis factor-α and nitric oxide. These data indicate that chronic low-level infections change the response to trauma and should be considered when designing and administering therapeutics. Topics: Animals; Chemokines; Chemotactic Factors; Chronic Disease; Complement C5a; Gastroenteritis; Gastrointestinal Hemorrhage; Helicobacter Infections; Jejunum; Leukotriene B4; Macrophages; Male; Mice; Mice, Inbred C57BL; Neutrophils; Nitric Oxide; Specific Pathogen-Free Organisms; Tumor Necrosis Factor-alpha | 2010 |
The relationship between the concentration of dextran sodium sulfate and the degree of induced experimental colitis in weanling rats.
Although a dextran sodium sulfate (DSS)-induced colitis is commonly used as an ulcerative colitis (UC) model in adult rodents, there are no studies using this model in young animals. We examined differences in the severity of DSS-induced colitis as a function of the concentration of DSS administered and sought to establish a DSS-induced colitis model in young rats.. We administrated different concentrations of DSS solution (2%, 3%, and 4%) to 4-week-old weanling rats and compared their clinical findings, colonic histologic findings, mucosal leukotriene B4 (LTB4) production, and mucosal blood flow with control weanling rats and 8-week-old adult rats given 4% DSS for induced colitis.. Clinical symptoms, such as diarrhea and rectal bleeding, histologic findings, and disturbance of mucosal microcirculation in weanling rats given 4% DSS were significantly more severe than those in adult rats given the same treatment. Three of 10 rats given 2% DSS had no bloody stool and 2 of 10 rats given 4% DSS died during the experimental periods. Clinical symptoms, hemoglobin levels, histologic damage scores, mucosal LTB4 production, and mucosal blood flow became more severely deranged as the concentration of DSS increased from 2% to 4%.. These findings suggest that we can adjust disease severity in UC model for young children by giving different concentrations of DSS to weanling rats. Topics: Aging; Animals; Colitis; Colon; Dextran Sulfate; Diarrhea; Disease Models, Animal; Dose-Response Relationship, Drug; Gastrointestinal Hemorrhage; Intestinal Mucosa; Leukotriene B4; Male; Rats; Rats, Wistar; Weaning | 2003 |
Do eicosanoids cause colonic dysfunction in experimental E coli O157:H7 (EHEC) infection?
The pathophysiology of enterohaemorrhagic Escherichia coli (EHEC) infection remains unclear. Eicosanoids have been implicated as pathophysiological mediators in other colitides.. To determine if prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) contribute to mucosal inflammation and dysfunction in EHEC colitis.. Ten day old rabbits were infected with EHEC. For five days after infection, mucosal synthesis of PGE(2) and LTB(4) was measured in distal colonic tissue from control and infected animals and (51)Cr-EDTA permeability was assessed in vivo. Myeloperoxidase activity was measured and histological inflammation and damage were assessed at five days in control and infected animals and after treatment of infected animals with the LTB(4) synthesis inhibitor MK-886. In separate experiments, ion transport was measured in Ussing chambers, before and after in vitro addition of the cyclooxygenase inhibitor indomethacin.. LTB(4) synthesis was increased from day 2 after infection onwards and PGE(2) synthesis was increased on day 3. Mucosal permeability did not increase until day 5 after infection. MK-886 inhibited colonic LTB(4) production but did not reduce diarrhoea, inflammation, or mucosal damage. Electrolyte transport was not significantly altered on day 3 after infection. However, both Cl secretion and reduced Na absorption found on day 5 were partially reversed by indomethacin.. Tissue synthesis of PGE(2) and LTB(4) did not correlate temporally with EHEC induced inflammation or changes in mucosal permeability and ion transport. Cyclooxygenase inhibition partially reversed ion transport abnormalities but lipoxygenase inhibition did not affect mucosal inflammation or histological damage. We conclude that the contribution of eicosanoids to mucosal injury and dysfunction is more complex than previously suggested. Topics: Animals; Colitis; Dinoprostone; Disease Models, Animal; Eicosanoids; Electrolytes; Escherichia coli Infections; Gastric Mucosa; Gastrointestinal Hemorrhage; Indoles; Leukotriene B4; Lipoxygenase Inhibitors; Permeability; Rabbits | 2000 |