leukotriene-b4 has been researched along with Gastroenteritis* in 2 studies
2 other study(ies) available for leukotriene-b4 and Gastroenteritis
Article | Year |
---|---|
Hemorrhage-induced intestinal damage is complement-independent in Helicobacter hepaticus-infected mice.
With more than half of the world population infected, Helicobacter infection is an important public health issue associated with gastrointestinal cancers and inflammatory bowel disease. Animal studies indicate that complement and oxidative stress play a role in Helicobacter infections. Hemorrhage (HS) induces tissue damage that is attenuated by blockade of either complement activation or oxidative stress products. Therefore, we hypothesized that chronic Helicobacter hepaticus infection would modulate HS-induced intestinal damage and inflammation. To test this hypothesis, we examined HS-induced jejunal damage and inflammation in uninfected and H. hepaticus-infected mice. Helicobacter hepaticus infection increased HS-induced midjejunal mucosal damage despite attenuating complement activation. In addition, infection alone increased chemokine secretion, changing the HS-induced neutrophil infiltration to a macrophage-mediated inflammatory response. The HS-induced macrophage infiltration correlated with increased secretion of tumor necrosis factor-α and nitric oxide in the infected mice. Together, these data indicate that Helicobacter infection modulates the mechanism of HS-induced intestinal damage and inflammation from a complement-mediated response to a macrophage response with elevated tumor necrosis factor-α and nitric oxide. These data indicate that chronic low-level infections change the response to trauma and should be considered when designing and administering therapeutics. Topics: Animals; Chemokines; Chemotactic Factors; Chronic Disease; Complement C5a; Gastroenteritis; Gastrointestinal Hemorrhage; Helicobacter Infections; Jejunum; Leukotriene B4; Macrophages; Male; Mice; Mice, Inbred C57BL; Neutrophils; Nitric Oxide; Specific Pathogen-Free Organisms; Tumor Necrosis Factor-alpha | 2010 |
Effects of tepoxalin, a dual inhibitor of cyclooxygenase/5-lipoxygenase, on events associated with NSAID-induced gastrointestinal inflammation.
Prostaglandins and thromboxanes are products of arachidonic acid metabolism via the cyclooxygenase (CO) enzyme and are responsible for the pain and swelling common to sites of inflammation. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the production of these substances and are used in the treatment of inflammatory diseases such as arthritis. However, one of the major side-effects of NSAID therapy is gastric ulceration. It is possible that inhibition of prostaglandin production and a related increase in the formation of leukotrienes via the 5-lipoxygenase (5-LO) enzymatic pathway are responsible for attracting inflammatory cells, causing local sites of inflammation and producing ulceration. To determine the effects of 5-LO inhibition on this hypothesis, studies were performed in rats to evaluate the effects of tepoxalin, a dual CO/LO inhibitor on leukotriene B4 levels in gastric mucosa and neutrophil adhesion in mesenteric venules. In rats, chronic oral administration of an NSAID, indomethacin (2 mg/kg daily over 4 days), resulted in 40% mortality, accompanied by intestinal adhesions and perforations when evaluated 24 h after the fourth dose of drug. Additionally, neutrophil adhesion was increased in the mesenteric venules and cell infiltration was evident in the mesenteric interstitium. These gastrointestinal side-effects were inhibited in a separate group of rats administered tepoxalin (20 mg/kg, p.o) 30 min prior to each daily indomethacin treatment. Further studies were performed to determine tepoxalin's effects on early events associated with NSAID-induced gastrointestinal inflammation, including neutrophil adhesion, lipid peroxide generation and LTB4 production. Indomethacin (100 mg/kg, p.o.) produced elevated levels of LTB4 in rat gastric mucosa 90 min after administration. Additionally, neutrophil adhesion in mesenteric venules was increased at this dose and with the administration of another NSAID, naproxen. No generation of lipid peroxides was evident in the gastric mucosa at this timepoint. Tepoxalin (up to 400 mg/kg, p.o.) did not have an effects on gastric mucosal LTB4 generation and lipid peroxide levels. A decrease in neutrophil adhesion was observed at the highest dose. In another study, pretreatment with tepoxalin (ED50=7.5 mg/kg, p.o.) or the selective 5-LO inhibitor zileuton (100 mg/kg, p.o.) prevented the increases in gastric mucosal LTB4 levels and neutrophil adhesion induced by indomethacin (100 mg/kg, p.o.). These data sugg Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Adhesion; Cyclooxygenase Inhibitors; Enzyme Inhibitors; Female; Gastric Mucosa; Gastroenteritis; Indomethacin; Leukotriene B4; Lipid Peroxides; Lipoxygenase Inhibitors; Mesenteric Veins; Neutrophils; Pyrazoles; Rats; Rats, Sprague-Dawley | 1997 |