leukotriene-b4 has been researched along with Brain-Injuries* in 8 studies
1 review(s) available for leukotriene-b4 and Brain-Injuries
Article | Year |
---|---|
Specific physiological roles of cytosolic phospholipase A(2) as defined by gene knockouts.
The cytosolic 85 kDa phospholipase A(2) (cPLA(2)) is a unique member of the phospholipase A(2) (PLA(2)) superfamily. Because PLA(2) activity and eicosanoid production are important in normal and pathophysiological states we and the laboratory of Shimizu created a mouse deficient in cPLA(2) (cPLA(2)(-/-) mouse). cPLA(2)(-/-) mice develop normally but the females have severe reproductive defects. cPLA(2)(-/-) mice suffer smaller infarcts and fewer neurological deficits after transient occlusion of the middle cerebral artery and have less injury after administration of a dopaminergic selective neurotoxin. cPLA(2)(-/-) mice have a more rapid recovery from allergen-induced bronchoconstriction and have no airway hyperresponsiveness. Peritoneal macrophages from cPLA(2)(-/-) mice fail to produce prostaglandins, leukotriene B(4) and cysteinyl leukotrienes after stimulation. Bone marrow-derived mast cells from cPLA(2)(-/-) mice fail to produce eicosanoids in either immediate or delayed phase responses. Thus the cPLA(2) knockout mouse has revealed important roles of cPLA(2) in normal fertility, generation of eicosanoids from inflammatory cells, brain injuries and allergic responses. Furthermore the cPLA(2)(-/-) mouse reveals that the many other forms of PLA(2) cannot replace many functions of cPLA(2). The importance of cPLA(2) in inflammation and tissue injury suggests that pharmacological targeting of this enzyme may have important therapeutic benefits. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Airway Resistance; Anaphylaxis; Animals; Brain Injuries; Brain Ischemia; Bronchoconstriction; Cytosol; Female; Gene Deletion; Leukotriene B4; Leukotriene C4; Lipopolysaccharides; Litter Size; Macrophages, Peritoneal; Methacholine Chloride; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Cerebral Artery; Models, Animal; Ovalbumin; Phospholipases A; Pregnancy | 2000 |
7 other study(ies) available for leukotriene-b4 and Brain-Injuries
Article | Year |
---|---|
Inhibition of leukotriene B4 synthesis protects against early brain injury possibly via reducing the neutrophil-generated inflammatory response and oxidative stress after subarachnoid hemorrhage in rats.
Leukotriene B4 (LTB4) is a highly potent neutrophil chemoattractant and neutrophils induces inflammatory response and oxidative stress when they recruit to and infiltrate in the injuried/inflamed site, such as the brain parenchyma after aneurysmal subarachnoid hemorrhage (SAH). This study is to investigate the potential effects of inhibition of LTB4 synthesis on neutrophil recruitment, inflammatory response and oxidative stress, as well as early brain injury (EBI) in rats after SAH. A pre-chiasmatic cistern SAH model of rats was used in this experiment. SC 57461A was used to inhibit LTB4 synthesis via intracerebroventricular injection. The brain tissues of temporal lobe after SAH were analyzed. Neuronal injury, brain edema and neurological function were evaluated to investigate the development of EBI. We found that inhibition of LTB4 synthesis after SAH could reduce the level of myeloperoxidase, alleviate the inflammatory response and oxidative stress, and reduce neuronal death in the brain parenchyma, and ameliorate brain edema and neurological behavior impairment at 24h after SAH. These results suggest that inhibition of LTB4 synthesis might alleviate EBI after SAH possibly via reducing the neutrophil-generated inflammatory response and oxidative stress. Topics: Animals; beta-Alanine; Blood-Brain Barrier; Brain Edema; Brain Injuries; Disease Models, Animal; Inflammation; Leukotriene B4; Male; Neutrophils; Oxidative Stress; Rats, Sprague-Dawley; Subarachnoid Hemorrhage | 2018 |
Naja sputatrix Venom Preconditioning Attenuates Neuroinflammation in a Rat Model of Surgical Brain Injury via PLA2/5-LOX/LTB4 Cascade Activation.
Inflammatory preconditioning is a mechanism in which exposure to small doses of inflammatory stimuli prepares the body against future massive insult by activating endogenous protective responses. Phospholipase A2/5-lipoxygenase/leukotriene-B4 (PLA2/5-LOX/LTB4) axis is an important inflammatory signaling pathway. Naja sputatrix (Malayan spitting cobra) venom contains 15% secretory PLA2 of its dry weight. We investigated if Naja sputatrix venom preconditioning (VPC) reduces surgical brain injury (SBI)-induced neuroinflammation via activating PLA2/5-LOX/LTB4 cascade using a partial frontal lobe resection SBI rat model. Naja sputatrix venom sublethal dose was injected subcutaneously for 3 consecutive days prior to SBI. We observed that VPC reduced brain edema and improved neurological function 24 h and 72 h after SBI. The expression of pro-inflammatory mediators in peri-resection brain tissue was reduced with VPC. Administration of Manoalide, a PLA2 inhibitor or Zileuton, a 5-LOX inhibitor with VPC reversed the protective effects of VPC against neuroinflammation. The current VPC regime induced local skin inflammatory reaction limited to subcutaneous injection site and elicited no other toxic effects. Our findings suggest that VPC reduces neuroinflammation and improves outcomes after SBI by activating PLA2/5-LOX/LTB4 cascade. VPC may be beneficial to reduce post-operative neuroinflammatory complications after brain surgeries. Topics: Animals; Arachidonate 5-Lipoxygenase; Biomarkers; Brain; Brain Edema; Brain Injuries; Elapid Venoms; Hydroxyurea; Inflammation; Intraoperative Complications; Leukocyte Count; Leukotriene B4; Lipoxygenase Inhibitors; Naja; Phospholipase A2 Inhibitors; Phospholipases A2; Rats; Signal Transduction; Skin; Subcutaneous Tissue; Terpenes | 2017 |
Injury-related production of cysteinyl leukotrienes contributes to brain damage following experimental traumatic brain injury.
The leukotrienes belong to a family of biologically active lipids derived from arachidonate that are often involved in inflammatory responses. In the central nervous system, a group of leukotrienes, known as the cysteinyl leukotrienes, is generated in brain tissue in response to a variety of acute brain injuries. Although the exact clinical significance of this excess production remains unclear, the cysteinyl leukotrienes may contribute to injury-related disruption of the brain-blood barrier and exacerbate secondary injury processes. In the present study, the formation and role of cysteinyl leukotrienes was explored in the fluid percussion injury model of traumatic brain injury in rats. The results showed that levels of the cysteinyl leukotrienes were elevated after fluid percussion injury with a maximal formation 1 hour after the injury. Neutrophils contributed to cysteinyl leukotriene formation in the injured brain hemisphere, potentially through a transcellular biosynthetic mechanism. Furthermore, pharmacological reduction of cysteinyl leukotriene formation after the injury, using MK-886, resulted in reduction of brain lesion volumes, suggesting that the cysteinyl leukotrienes play an important role in traumatic brain injury. Topics: Animals; Brain Injuries; Chromatography, Liquid; Cysteine; Disease Models, Animal; Enzyme Inhibitors; Indoles; Leukotriene B4; Leukotriene C4; Leukotriene D4; Leukotriene E4; Leukotrienes; Male; Mass Spectrometry; Neutrophils; Rats; Rats, Sprague-Dawley | 2009 |
CYP4Fs expression in rat brain correlates with changes in LTB4 levels after traumatic brain injury.
Cytochrome P450 (CYP) 4Fs constitute a subgroup of the cytochrome P450 superfamily and are involved in cellular protection and metabolism of numerous molecules, including drugs, toxins, and eicosanoids. CYP4Fs are widely distributed in rat brain with each isoform having a unique distribution pattern throughout different brain regions. The present study shows that traumatic brain injury (TBI) triggers inflammation and elicits changes in mRNA expression of CYP4Fs in the frontal and occipital lobes and the hippocampus. At 24 h post-injury, almost all CYP4F mRNA expression is suppressed compared with sham control throughout these three regions, while at 2 weeks post-injury, all CYP4F mRNAs increase, reaching levels higher than those at 24 h post-injury or uninjured controls. These changes in CYP4F levels inversely correlate with levels of leukotriene B4 (LTB4) levels in the brain following injury at the same time points. TBI also causes changes in CYP4F protein expression and localization around the injury site. CYP4F1 and CYP4F6 immunoreactivity increases in surrounding astrocytes, while CYP4F4 immunoreactivity shifts from endothelia of cerebral vessels to astrocytes. Topics: Animals; Brain; Brain Injuries; Cytochrome P-450 Enzyme System; Cytochrome P450 Family 4; Down-Regulation; Encephalitis; Gene Expression Regulation; Isoenzymes; Leukotriene B4; Male; Rats; Rats, Sprague-Dawley; RNA, Messenger; Time Factors; Up-Regulation | 2008 |
Brain trauma leads to enhanced lung inflammation and injury: evidence for role of P4504Fs in resolution.
Traumatic brain injury is known to cause several secondary effects, which lead to multiple organ dysfunction syndrome. An acute systemic inflammatory response seems to play an integral role in the development of such complications providing the potential for massive secondary injury. We show that a contusion injury to the rat brain causes large migration of inflammatory cells (especially macrophages and neutrophils) in the major airways and alveolar spaces at 24 h post-injury, which is associated with enhanced pulmonary leukotriene B4 (LTB4) production within the lung. However, by 2 weeks after injury, a temporal switch occurs and the resolution of inflammation is underway. We provide evidence that 5-lipoxygenase and Cytochrome P450 4Fs (CYP4Fs), the respective enzymes responsible for LTB4 synthesis and breakdown, play crucial roles in setting the cellular concentration of LTB4. Activation of LTB4 breakdown via induction of CYP4Fs, predominantly in the lung tissue, serves as an endogenous signal to ameliorate further secondary damage. In addition, we show that CYP4Fs are localized primarily in the airways and pulmonary endothelium. Given the fact that adherence to the microvascular endothelium is an initial step in neutrophil diapedesis, the temporally regulated LTB4 clearance in the endothelium presents a novel focus for treatment of pulmonary inflammation after injury. Topics: Accidents, Traffic; Animals; Blood-Brain Barrier; Blotting, Western; Brain Injuries; Bronchoalveolar Lavage Fluid; Cytochrome P-450 Enzyme System; Female; Humans; Immunoenzyme Techniques; Immunohistochemistry; Leukotriene B4; Lung; Lung Diseases; Male; Microscopy, Confocal; Pneumonia; Proteins; Rats; Rats, Long-Evans; Reverse Transcriptase Polymerase Chain Reaction; RNA | 2007 |
Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury.
The post-traumatic changes of leukotrienes LTC4, LTD4, LTE4, and LTB4 in cerebrospinal fluid of rats from 10 min to 7 days were investigated after controlled cortical impact in relation to brain edema and cellular inflammatory response. LTC4 increased five-fold at 4 h, normalized at 24 h, and showed another four-fold increase at 7 days. The same pattern was observed for LTD4 and LTE4. LTB4 however, behaved differently: concentrations were lower and levels peaked two-fold at 24 h. Edema in the injured hemisphere increased continuously up to 24 h without change contralaterally. Leukocyte infiltration, macrophage presence and microglia activation were most prominent at 24 h, 7 days and 24 h respectively. Leukotriene changes in CSF seem to reflect those in the affected tissue, with a time delay and in lower concentrations, and were not linearly correlated to brain edema. The initially high leukotriene levels are rather likely to contribute to the cytotoxic edema than to enhance a vasogenic edema component. The profile of LTB4 was parallel to the time course of leukocyte infiltration, indicating initiation of infiltration as well as prolonged production by leukocytes themselves. The second leukotriene peak at 7 days is likely to follow a different pathway and might be related to a production in macrophages or activated glia. Topics: Animals; Brain Edema; Brain Injuries; Leukocytes; Leukotriene B4; Leukotriene C4; Leukotriene D4; Leukotriene E4; Leukotrienes; Male; Rats; Rats, Sprague-Dawley; Water | 2003 |
Eicosanoids in human ventricular cerebrospinal fluid following severe brain injury.
Recent evidence has shown that a variety of prostaglandins and leukotrienes can be produced in brain tissue after injury in animals. It has also been speculated that increases in brain prostaglandins occur in humans following injury. Ventricular cerebrospinal fluid (CSF) samples have been obtained from children with static lesions (controls) as well as children with acute brain injury and eicosanoids measured by immunologic techniques. Metabolites of prostacyclin (6-keto-PGF1 a) and thromboxane A2 (thromboxane B2) were the major eicosanoids found in CSF, and levels of these compounds were increased 3-10 times in acutely injured patients. Prostaglandin E2 was also found in lower amounts, although in one case its level was very high. Prostaglandin D2 was also present, but in low amounts. No leukotrienes were found in CSF samples that were purified by HPLC prior to immunoassay. Elevated levels of hydroxyeicosatetraenoic acids (HETEs) were observed in those samples stored frozen, but these metabolites were most probably due to autooxidation of arachidonic acid in CSF. Arachidonic acid concentration in CSF was typically found to be in the range of 10-200 ng/ml, but was found to be 5-10 fold higher in one severely injured patient. Thus, elevated free arachidonic acid and various oxygenated metabolites were observed in CSF following brain injury. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; 6-Ketoprostaglandin F1 alpha; Adolescent; Arachidonic Acid; Arachidonic Acids; Brain Injuries; Cerebral Ventricles; Child; Child, Preschool; Chromatography, High Pressure Liquid; Dinoprostone; Eicosanoic Acids; Humans; Hydroxyeicosatetraenoic Acids; Infant; Infant, Newborn; Leukotriene B4; Prostaglandin D2; Prostaglandins D; Prostaglandins E; SRS-A; Thromboxane B2 | 1987 |