leukotriene-a4 has been researched along with Leukemia--Basophilic--Acute* in 2 studies
2 other study(ies) available for leukotriene-a4 and Leukemia--Basophilic--Acute
Article | Year |
---|---|
Stabilization of leukotriene A4 by epithelial fatty acid-binding protein in the rat basophilic leukemia cell.
Leukotriene A(4) (LTA(4)) is a chemically unstable triene epoxide product of 5-lipoxygenase metabolism of arachidonic acid. Despite this chemical reactivity and its synthesis at the perinuclear membrane, LTA(4) is enzymatically converted into the cysteinyl leukotrienes and leukotriene B(4). Furthermore, LTA(4) participates in transcellular biosynthesis and is thus transferred between cells as an intact molecule. A cytosolic fatty acid-binding protein present in the rat basophilic leukemia cells was identified using mass spectrometry. This protein was determined to be the stabilizing factor present in the cell cytosol responsible for increasing the effective chemical half-life of LTA(4). Rat epithelial fatty acid-binding protein (E-FABP) was isolated using partial protein purification and immunoprecipitation. In-gel digestion with trypsin followed by peptide fingerprint analysis using matrix-assisted laser desorption ionization mass spectrometry and sequencing the major tryptic peptide obtained from liquid chromatography/mass spectrometry/mass spectrometry analysis identified E-FABP in the active fraction. Semi-quantitative Western blot analysis indicated that E-FABP in the cytosolic fraction of RBL-1 cells was present at approximately 1-3 pmol/10(6) cells. E-FABP (9 microm) was tested for its ability to stabilize LTA(4), and at 37 degrees C E-FABP was able to increase the half-life of LTA(4) from the previously reported half-life less than 3 s to a half-life of approximately 7 min. These results present a novel function for the well studied fatty acid-binding protein as a participant in leukotriene biosynthesis that permits LTA(4) to be available for further enzymatic processing in various cellular regions. Topics: Animals; Blotting, Western; Carrier Proteins; Chromatography, High Pressure Liquid; Cytosol; Electrophoresis, Polyacrylamide Gel; Eye Proteins; Fatty Acid-Binding Proteins; Half-Life; Immunosorbent Techniques; Leukemia, Basophilic, Acute; Leukotriene A4; Mass Spectrometry; Nerve Tissue Proteins; Peptide Fragments; Peptide Mapping; Rats; Sequence Analysis, Protein; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Trypsin; Tumor Cells, Cultured | 2004 |
The Chinese herbal medicine, shinpi-to, inhibits IgE-mediated leukotriene synthesis in rat basophilic leukemia-2H3 cells.
We examined the action of Shinpi-To (Formula divinita; TJ-85), a granular extract of seven Chinese medicinal herbs that is used in treating childhood asthma, on the leukotriene synthesis in rat basophilic leukemia-2H3 cells (RBL-2H3 cells). IgE-loaded cells were stimulated with anti-IgE serum in the presence or absence of Shinpi-To. Released LTC4 and LTB4 were measured by radioimmunoassay (RIA). Shinpi-To significantly inhibited IgE-mediated synthesis of leukotriene (LT)C4 and LTB4. To identify the inhibitory sites, we investigated the action of this extract on four synthetic enzymes, phospholipase A2 (PLA2), 5-lipoxygenase (5-LO). LTC4 synthase, and LTA4 hydrolase. Shinpi-To inhibited the A23187-stimulated release of [3H]arachidonic acid (AA) from the cell membrane, reflecting an effect on PLA2 activity. It also suppressed production of LTC4 and LTB4 when cell lysates were incubated with AA as substrate. It did not inhibit the production of LTC4 and LTB4 when LTA4-free acid was used as the substrate. Shinpi-To did not inhibit the IgE-mediated increase of intracellular Ca2+ ([Ca2+]i) concentration. Results indicate that Shinpi-To inhibits LT synthesis by inhibiting PLA2 and 5-LO activities without affecting the mobilization of [Ca2+]i. Topics: Analysis of Variance; Animals; Arachidonic Acid; Asthma; Bronchodilator Agents; Calcimycin; Calcium; Cell Membrane; Drugs, Chinese Herbal; Ephedrine; Immunoglobulin E; Ionophores; Isotope Labeling; Leukemia, Basophilic, Acute; Leukotriene A4; Leukotriene B4; Leukotriene C4; Lipoxygenase Inhibitors; Phospholipases A; Phospholipases A2; Radioimmunoassay; Rats; Tritium; Tumor Cells, Cultured | 1997 |