leptin and Status-Epilepticus

leptin has been researched along with Status-Epilepticus* in 2 studies

Other Studies

2 other study(ies) available for leptin and Status-Epilepticus

ArticleYear
Serum Levels of Neuropeptides in Epileptic Encephalopathy With Spike-and-Wave Activation in Sleep.
    Pediatric neurology, 2023, Volume: 144

    Epileptic encephalopathy with spike-and-wave activation in sleep (EE-SWAS) is a syndrome of childhood, characterized by diffuse or generalized spike-wave activity in electroencephalography during non-rapid eye movement sleep. Neuropeptides have been demonstrated in several studies to function in the sleep-wake cycle and display convulsant and anticonvulsant features. In this study, we aimed to investigate the relationship between EE-SWAS and neuropeptides such as dynorphin, galanin, ghrelin, leptin, melatonin, and orexin.. This multicenter study was conducted from July 2019 to January 2021. There were three groups: Group 1 contained patients with EE-SWAS. Group 2 consisted of patients with self-limited focal epilepsy of childhood (SeLFE), and group 3 was the control group. Levels of neuropeptides were compared in the sera of these three groups.. There were 59 children aged between four and 15 years. Group 1 contained 14 children, group 2 contained 24 children, and group 3 contained 21 children. The level of leptin is higher and the level of melatonin is lower in group 1 than in group 3 (P = 0.01 and P = 0.005, respectively). In group 3, the level of orexin was lower than in both groups 2 and 3 (P = 0.01 and P = 0.01).. These data show that the level of leptin was higher and the level of melatonin was lower in patients with EE-SWAS than in the control group. Furthermore, patients with EE-SWAS had lower orexin levels than both the control group and patients with SeLFE. Further research is required to understand the potential role of these neuropeptides in the pathophysiology of EE-SWAS.

    Topics: Adolescent; Child; Child, Preschool; Electroencephalography; Epilepsies, Partial; Epilepsy, Generalized; Humans; Leptin; Melatonin; Orexins; Sleep; Status Epilepticus

2023
Neuroprotective effects of leptin following kainic acid-induced status epilepticus.
    Epilepsy & behavior : E&B, 2010, Volume: 19, Issue:3

    We investigated the potential neuroprotective effects of leptin (LEP) against cellular damage, long-term recurrent spontaneous seizures, and behavioral changes associated with kainate (KA)-induced status epilepticus (SE). Adult Sprague-Dawley rats were sacrificed 24 hours after KA injections, and hippocampi were subjected to histological analysis. In the acute condition, one group received 12 mg/kg KA intraperitoneally (KAac group), and another group received 12 mg/kg KA intraperitoneally, followed by two intraperitoneal LEP injections of 4 mg/kg each, 1 and 13 hours after KA (KALEPac group). For long-term outcomes, one group received KA (KA group), and the other group received three intraperitoneal LEP injections (4 mg/kg at 1 hour, and 2mg/kg at 13 and 24 hours) after KA (KALEP group). Controls were sham manipulated. Behavioral tests started 6 weeks after SE. All rats that received KA underwent behavioral seizures of comparable severity. Compared with the KAac group, the KALEPac group had significantly larger pyramidal cell surface areas and fewer black-stained degenerating neurons with silver stain. The KALEP and KA groups were comparable with respect to recurrent spontaneous seizures, aggression, hyperactivity, and impaired memory. We show that leptin reduces cellular injury associated with KA-induced SE, but does not prevent long-term recurrent spontaneous seizures and behavioral deficits.

    Topics: Analysis of Variance; Animals; Cell Count; Disease Models, Animal; Drug Interactions; Hippocampus; Kainic Acid; Leptin; Male; Neuroprotective Agents; Pyramidal Cells; Rats; Rats, Sprague-Dawley; Status Epilepticus

2010