leptin has been researched along with Memory-Disorders* in 10 studies
10 other study(ies) available for leptin and Memory-Disorders
Article | Year |
---|---|
Effects of caloric restriction on monoaminergic neurotransmission, peripheral hormones, and olfactory memory in aged rats.
Aging is associated with a reduced ability to identify and discriminate scents, and olfactory dysfunction has been linked to preclinical stages of neurodegenerative diseases in humans. Moreover, emerging evidence suggests that smell-driven behaviors are regulated by hormones like insulin or leptin, and by metabolic parameters like glucose, which in turn may influence monoaminergic neurotransmission in brain areas related to cognition. Several studies have suggested that dietary interventions like caloric restriction (CR) can mitigate the age-induced decline in memory by modifying metabolic parameters and brain monoaminergic levels. The present study explored the effects of CR on age-dependent olfactory memory deficits, as well as their relationship with peripheral leptin, insulin and glucose levels, and brain monoamines. To this end, aged rats (24-months-old) fed on a CR diet or with ad libitum access to food, and adult rats (3-4 months), were trained in an odor discrimination task (ODT). The peripheral plasma levels of insulin, leptin, and glucose, and of monoamines and metabolites/precursors in brain areas related to olfactory learning and memory processes, such as the striatum and frontal cortex (FC), were determined. The data obtained indicated that CR attenuated the age-dependent decline in olfactory sensitivity in old animals fed ad libitum, which was correlated with the performance in ODT retention trial, as well as with leptin plasma levels. CR enhanced dopamine levels in the striatum, while it attenuated the age-related decline in serotonin levels in the striatum and FC. Such findings support a positive effect of CR on age-dependent olfactory sensitivity decline and dysfunctions in brain monoamine levels. Topics: Aging; Animals; Behavior, Animal; Caloric Restriction; Corpus Striatum; Disease Models, Animal; Dopamine; Leptin; Male; Memory Disorders; Olfactory Perception; Prefrontal Cortex; Rats; Rats, Wistar; Serotonin | 2021 |
Neuroinflammation induced by lipopolysaccharide leads to memory impairment and alterations in hippocampal leptin signaling.
Peripheral inflammation promotes immune-to-brain communication, mediated by cytokines that affect brain activity. Lipopolysaccharide (LPS) has been widely used to mimic systemic inflammation, and the adipokine leptin, released in this condition, modulates hypothalamic leptin receptors (ObR), contributing to sickness behavior. In this study, we used the intracerebroventricular (ICV) route for LPS administration in an attempt to evaluate an acute and direct of this pathogen-associated molecular pattern on leptin-mediated signaling in the hippocampus, where ObR has been implicated in modulating cognitive response. We used bilateral ICV injection of LPS (25 μg/ventricle) in 60-day-old male Wistar rats and the analysis were performed 48 h after surgery. Neuroinflammation was characterized in the LPS group by an increase in concentration of IL-1β, COX-2 and TLR4 in the hippocampus as well as glial fibrillary acidic protein (GFAP), indicating an astrocyte commitment. Cognitive damage was observed in the animals of the LPS group by an inability to increase the recognition index during the object recognition test. We observed an increase in the concentration of leptin receptors in the hippocampus, which was unaccompanied by changes in the proteins involved in leptin intracellular signaling (p-STAT3 and SOCS3). Moreover, we found a decrease in leptin concentration in the serum of the animals in the LPS group accompanied by an increase in TNF-α levels. Our results showed that neuroinflammation, even in an acute state, can lead to cognitive impairment and may be associated with leptin signaling disturbances in the hippocampus. Topics: Animals; Cognitive Dysfunction; Hippocampus; Inflammation; Leptin; Lipopolysaccharides; Male; Memory Disorders; Rats; Rats, Wistar; Receptors, Leptin; Signal Transduction | 2020 |
The association of short-term memory and cognitive impairment with ghrelin, leptin, and cortisol levels in non-diabetic and diabetic elderly individuals.
This study assessed short-term memory and biochemical indicators with the levels of ghrelin, leptin, and cortisol between cognitive impairment and normal older adults with or without diabetes.. We enrolled 286 older adults (aged 65-85 years) with or without diabetes from the local community. Short-term memory was assessed using pictures of common objects; cognitive functioning was assessed using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). The physiological indexes assessed were plasma levels of fasting ghrelin and leptin, ghrelin level at 2_h after breakfast, 24-h urinary cortisol value, body mass index, and plasma cortisol levels at 8:00 a.m., 4:00 p.m., and 12:00 p.m.. In both non-diabetic and diabetic subjects, short-term memory was significantly lower in the impaired cognition group (5.99 ± 2.90 in non-diabetic subjects and 4.71 ± 2.14 in diabetic subjects) than in the normal cognition group (8.14 ± 2.23 in non-diabetic subjects and 7.82 ± 3.37 in diabetic subjects). Baseline ghrelin level was significantly lower in the impaired cognition group (9.07 ± 1.13 ng/mL in non-diabetic subjects and 7.76 ± 1.34 ng/mL in diabetic subjects) than in the normal cognition group (10.94 ± 1.53 ng/mL in non-diabetic subjects and 9.93 ± 1.76 ng/mL in diabetic subjects); plasma cortisol levels at 8:00 a.m., 4:00 p.m., and 12:00 p.m. were significantly higher in the impaired cognition group than in the normal cognition group, while no significant difference was observed in plasma levels of fasting leptin between different groups.. Fasting plasma ghrelin and cortisol levels may be markers of cognitive decline and memory loss. It is possible that adjusting their levels may have a therapeutic effect, and this should be investigated in future studies. Topics: Aged; Aged, 80 and over; Biomarkers; Body Mass Index; Case-Control Studies; Cognition; Cognitive Dysfunction; Diabetes Complications; Diabetes Mellitus; Fasting; Female; Ghrelin; Humans; Hydrocortisone; Leptin; Male; Memory Disorders; Memory, Short-Term | 2018 |
Chronic diabetic states worsen Alzheimer neuropathology and cognitive deficits accompanying disruption of calcium signaling in leptin-deficient APP/PS1 mice.
The coincidences between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are so compelling that it is attractive to speculate that diabetic conditions might aggravate AD pathologies by calcium dysfunction, although the understanding of the molecular mechanisms involved remains elusive. The present work was undertaken to investigate whether calcium dyshomeostasis is associated with the exacerbated Alzheimer-like cognitive dysfunction observed in diabetic conditions in APP/PS1-ob/ob mice, which were generated by crossing ob/ob mice with APP/PS1 mice. We confirmed that the diabetic condition can aggravate not only Aβ deposition but also tau phosphorylation, synaptic loss, neuronal death, and inflammation, exacerbating cognitive impairment in AD mice. More importantly, we found that the diabetic condition dramatically elevated calcium levels in APP/PS1 mice, thereby stimulating the phosphorylation of the calcium-dependent kinases. Our findings suggest that controlling over-elevation of intracellular calcium may provide novel insights for approaching AD in diabetic patients and delaying AD progression. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Brain; Calcium Signaling; Cognitive Dysfunction; Diabetes Mellitus, Type 2; Disease Models, Animal; Humans; Inflammation; Leptin; Male; Memory Disorders; Mice; Mice, Transgenic; Phosphorylation; Protein Aggregation, Pathological; Signal Transduction; Synapses; tau Proteins | 2017 |
Diet-induced obesity alters memory consolidation in female rats.
Obesity is a multifactorial disease characterized by the abnormal or excessive fat accumulation, which is caused by an energy imbalance between consumed and expended calories. Obesity leads to an inflammatory response that may result in peripheral and central metabolic changes, including insulin and leptin resistance. Insulin and leptin resistance have been associated with metabolic and cognitive dysfunctions. Obesity and some neurodegenerative diseases that lead to dementia affect mainly women. However, the effects of diet-induced obesity on memory consolidation in female rats are poorly understood. Therefore, the aim of this study was to evaluate the effect of a hypercaloric diet on the object recognition memory of female rats and on possible related metabolic changes. The animals submitted to the hypercaloric diet presented a higher food intake in grams and in calories, resulting in increased weight gain and liposomatic index in comparison with the animals exposed to the control diet. These animals presented a memory deficit in the object recognition test and increased serum levels of glucose and leptin. However, no significant differences were found in the serum levels of insulin, TNF-α and IL-1β, in the index of insulin resistance (HOMA), in the hippocampal levels of insulin, TNF-α and IL-1β, as well as on Akt expression or activation in the hippocampus. Our findings indicate that adult female rats submitted to a hypercaloric diet present memory consolidation impairment, which could be associated with diet-induced weight gain and leptin resistance, even without the development of insulin resistance. Topics: Animals; Blood Glucose; Body Weight; Diet; Disease Models, Animal; Eating; Energy Intake; Exploratory Behavior; Female; Insulin; Leptin; Liposomes; Memory Consolidation; Memory Disorders; Obesity; Rats; Rats, Wistar; Recognition, Psychology; Tumor Necrosis Factor-alpha | 2017 |
Memory impairment is associated with the loss of regular oestrous cycle and plasma oestradiol levels in an activity-based anorexia animal model.
Patients with anorexia nervosa (AN) suffer from neuropsychological deficits including memory impairments. Memory partially depends on 17β-oestradiol (E2), which is reduced in patients with AN. We assessed whether memory functions correlate with E2 plasma levels in the activity-based anorexia (ABA) rat model.. Nine 4-week-old female Wistar rats were sacrificed directly after weight loss of 20-25% (acute starvation), whereas 17 animals had additional 2-week weight-holding (chronic starvation). E2 serum levels and novel object recognition tasks were tested before and after starvation and compared with 21 normally fed controls.. Starvation disrupted menstrual cycle and impaired memory function, which became statistically significant in the chronic state (oestrous cycle (P < 0.001), E2 levels (P = 0.011) and object recognition memory (P = 0.042) compared to controls). E2 reduction also correlated with the loss of memory in the chronic condition (r = 0.633, P = 0.020).. Our results demonstrate that starvation reduces the E2 levels which are associated with memory deficits in ABA rats. These effects might explain reduced memory capacity in patients with AN as a consequence of E2 deficiency and the potentially limited effectiveness of psychotherapeutic interventions in the starved state. Future studies should examine whether E2 substitution could prevent cognitive deficits and aid in earlier readiness for therapy. Topics: Animals; Anorexia Nervosa; Body Weight; Disease Models, Animal; Estradiol; Estrous Cycle; Female; Humans; Leptin; Memory Disorders; Rats; Rats, Wistar | 2016 |
Leptin attenuates the detrimental effects of β-amyloid on spatial memory and hippocampal later-phase long term potentiation in rats.
β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1μg) effectively alleviated Aβ1-42 (20μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1-42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP. Topics: Amyloid beta-Peptides; Animals; Hippocampus; Leptin; Long-Term Potentiation; Male; Maze Learning; Memory Disorders; Memory, Short-Term; Neuronal Plasticity; Neuroprotective Agents; Peptide Fragments; Rats; Rats, Sprague-Dawley; Spatial Memory | 2015 |
Leptin gene therapy attenuates neuronal damages evoked by amyloid-β and rescues memory deficits in APP/PS1 mice.
There is growing evidence that leptin is able to ameliorate Alzheimer's disease (AD)-like pathologies, including brain amyloid-β (Aβ) burden. In order to improve the therapeutic potential for AD, we generated a lentivirus vector expressing leptin protein in a self-inactivating HIV-1 vector (HIV-leptin), and delivered this by intra-cerebroventricular administration to APP/PS1 transgenic model of AD. Three months after intra-cerebroventricular administration of HIV-leptin, brain Aβ accumulation was reduced. By electron microscopy, we found that APP/PS1 mice exhibited deficits in synaptic density, which were partially rescued by HIV-leptin treatment. Synaptic deficits in APP/PS1 mice correlated with an enhancement of caspase-3 expression, and a reduction in synaptophysin levels in synaptosome preparations. Notably, HIV-leptin therapy reverted these dysfunctions. Moreover, leptin modulated neurite outgrowth in primary neuronal cultures, and rescued them from Aβ42-induced toxicity. All the above changes suggest that leptin may affect multiple aspects of the synaptic status, and correlate with behavioral improvements. Our data suggest that leptin gene delivery has a therapeutic potential for Aβ-targeted treatment of mouse model of AD. Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Caspase 3; Genetic Therapy; Genetic Vectors; HIV-1; Injections, Intraventricular; Leptin; Memory Disorders; Mice; Neurons; Presenilin-1; Synapses; Synaptophysin | 2014 |
Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer's disease.
We have previously reported anti-amyloidogenic effects of leptin using in vitro and in vivo models and, more recently, demonstrated the ability of leptin to reduce tau phosphorylation in neuronal cells. The present study examined the efficacy of leptin in ameliorating the Alzheimer's disease (AD)-like pathology in 6-month old CRND8 transgenic mice (TgCRND8) following 8 weeks of treatment. Leptin-treated transgenic mice showed significantly reduced levels of amyloid-beta (Abeta){1-40} in both brain extracts (52% reduction, p= 0.047) and serum (55% reduction, p= 0.049), as detected by ELISA, and significant reduction in amyloid burden (47% reduction, p=0.041) in the hippocampus, as detected by immunocytochemistry. The decrease in the levels of Abeta in the brain correlated with a decrease in the levels of C99 C-terminal fragments of the amyloid-beta protein precursor, consistent with a role for beta -secretase in mediating the effect of leptin. In addition, leptin-treated TgCRND8 mice had significantly lower levels of phosphorylated tau, as detected by AT8 and anti-tau-Ser{396} antibodies. Importantly, after 4 or 8 weeks of treatment, there was no significant increase in the levels of C-reactive protein, tumor necrosis factor-alpha, and cortisol in the plasma of leptin-treated TgCRND8 animals compared to saline-treated controls, indicating no inflammatory reaction. These biochemical and pathological changes were correlated with behavioral improvements, as early as after 4 weeks of treatment, as recorded by a novel object recognition test and particularly the contextual and cued fear conditioning test after 8 weeks of treatment. Leptin-treated TgCRND8 animals significantly outperformed saline-treated littermates in these behavioral tests. These findings solidly demonstrate the potential for leptin as a disease modifying therapeutic in transgenic animals of AD, driving optimism for its safety and efficacy in humans. Topics: Alzheimer Disease; Amyloid Precursor Protein Secretases; Animals; C-Reactive Protein; Conditioning, Psychological; Disease Models, Animal; Fear; Hippocampus; Immunohistochemistry; Infusion Pumps, Implantable; Leptin; Memory Disorders; Mice; Mice, Transgenic; Neurons; Phosphorylation; Recognition, Psychology; tau Proteins | 2010 |
Effects of leptin on memory processing.
Leptin is a peptide hormone secreted by adipose tissue. Studies have shown that leptin crosses the blood-brain barrier (BBB) by a saturable transport system where it acts within the hypothalamus to regulate food intake and energy expenditure. Leptin also acts in the hippocampus where it facilitates the induction of long-term potentiation and enhances NMDA receptor-mediated transmission. This suggests that leptin plays a role in learning and memory. Obese mice and rats, which have leptin receptor deficiency, have impaired spatial learning. In disease states such as diabetes, humans and animals develop leptin resistance at the BBB. This suggests that low leptin levels in the brain may be involved in cognitive deficits associated with diabetes. In the current study, the effects of leptin on post-training memory processing in CD-1 mice were examined. Mice were trained in T-maze footshock avoidance and step down inhibitory avoidance. Immediately after training, mice received bilateral injections of leptin into the hippocampus. Retention was tested 1 week later in the T-maze and 1 day later in step down inhibitory avoidance. Leptin administration improved retention of T-maze footshock avoidance and step down inhibitory avoidance. Leptin administered 24 h after T-maze training did not improve retention when tested 1 week after training. SAMP8 mice at 12 months of age have elevated amyloid-beta protein and impaired learning and memory. We examined the effect of leptin on memory processing in the hippocampus of 4 and 12 months old SAMP8 mice. Leptin improved retention in both 4 and 12 months old SAMP8 mice; 12 month SAMP8 mice required a lower dose to improve memory compared to 4 months SAMP8 mice. The current results indicate that leptin in the hippocampus is involved in memory processing and suggests that low levels of leptin may be involved in cognitive deficits seen in disease states where leptin transport into the CNS is compromised. Topics: Animals; Avoidance Learning; Blood-Brain Barrier; Central Nervous System; Hippocampus; Leptin; Male; Maze Learning; Memory; Memory Disorders; Mice | 2006 |