leptin has been researched along with Intervertebral-Disc-Degeneration* in 7 studies
1 review(s) available for leptin and Intervertebral-Disc-Degeneration
Article | Year |
---|---|
Intervertebral Disc and Adipokine Leptin-Loves Me, Loves Me Not.
Leptin-the most famous adipose tissue-secreted hormone-in the human body is mostly observed in a negative connotation, as the hormone level increases with the accumulation of body fat. Nowadays, fatness is becoming another normal body shape. Fatness is burdened with numerous illnesses-including low back pain and degenerative disease of lumbar intervertebral disc (IVD). IVD degeneration and IVD inflammation are two indiscerptible phenomena. Irrespective of the underlying pathophysiological background (trauma, obesity, nutrient deficiency), the inflammation is crucial in triggering IVD degeneration. Leptin is usually depicted as a proinflammatory adipokine. Many studies aimed at explaining the role of leptin in IVD degeneration, though mostly in in vitro and on animal models, confirmed leptin's "bad reputation". However, several studies found that leptin might have protective role in IVD metabolism. This review examines the current literature on the metabolic role of different depots of adipose tissue, with focus on leptin, in pathogenesis of IVD degeneration. Topics: Animals; Humans; Intervertebral Disc Degeneration; Leptin | 2020 |
6 other study(ies) available for leptin and Intervertebral-Disc-Degeneration
Article | Year |
---|---|
Effects of Sex and Obesity on
Intervertebral disc degeneration (IVDD), for which obesity and genetics are known risk factors, is a chronic process that alters the structure and function of the intervertebral discs (IVD). Circulating leptin is positively correlated with body weight and is often measured to elucidate the pathogenesis of IVD degeneration. In this study, we examined the associations of LEP single nucleotide polymorphisms (SNPs) genetic and environmental effects with IVDD. A total of 303 Taiwanese patients with IVDD (mean age, 58.6 ± 12.7 years) undergoing cervical discectomy for neck pain or lumbar discectomy for back pain were enrolled. Commercially available enzyme-linked immunosorbent assay (ELISA) kits measured the circulating plasma leptin levels. TaqMan SNP genotyping assays genotyped the LEP SNPs rs2167270 and rs7799039. Leptin levels were significantly increased in obese individuals (p < 0.001) and non-obese or obese women (p < 0.001). In the dominant model, recoded minor alleles of rs2167270 and rs7799039 were associated with higher leptin levels in all individuals (p = 0.011, p = 0.012). Further, the association between these LEP SNPs and leptin levels was significant only in obese women (p = 0.025 and p = 0.008, respectively). There was an interaction effect between sex and obesity, particularly among obese women (interaction p = 0.04 and 0.02, respectively). Our findings demonstrate that these SNPs have sex-specific associations with BMI in IVDD patients, and that obesity and sex, particularly among obese women, may modify the LEP transcription effect. Topics: Aged; Female; Humans; Intervertebral Disc Degeneration; Leptin; Male; Middle Aged; Obesity; Polymorphism, Single Nucleotide; Receptors, Leptin | 2022 |
Leptin signaling and the intervertebral disc: Sex dependent effects of leptin receptor deficiency and Western diet on the spine in a type 2 diabetes mouse model.
Type 2 diabetes and obesity are associated with back pain in juveniles and adults and are implicated in intervertebral disc (IVD) degeneration. Hypercaloric Western diets are associated with both obesity and type 2 diabetes. The objective of this study was to determine if obesity and type 2 diabetes result in spinal pathology in a sex-specific manner using in vivo diabetic and dietary mouse models. Leptin is an appetite-regulating hormone, and its deficiency leads to polyphagia, resulting in obesity and diabetes. Leptin is also associated with IVD degeneration, and increased expression of its receptor was identified in degenerated IVDs. We used young, leptin receptor deficient (Db/Db) mice to mimic the effect of diet and diabetes on adolescents. Db/Db and Control mice were fed either Western or Control diets, and were sacrificed at 3 months of age. Db/Db mice were obese, while only female mice developed diabetes. Female Db/Db mice displayed altered IVD morphology, with increased intradiscal notochordal band area, suggesting delayed IVD cell proliferation and differentiation, rather than IVD degeneration. Motion segments from Db/Db mice exhibited increased failure risk with decreased torsional failure strength. Db/Db mice also had inferior bone quality, which was most prominent in females. We conclude that obesity and diabetes due to impaired leptin signaling contribute to pathological changes in vertebrae, as well as an immature IVD phenotype, particularly of females, suggesting a sex-dependent role of leptin in the spine. Topics: Animals; Diabetes Mellitus, Type 2; Diet, Western; Disease Models, Animal; Female; Humans; Intervertebral Disc; Intervertebral Disc Degeneration; Leptin; Male; Mice; Mice, Inbred NOD; Obesity; Receptors, Leptin; Sex Characteristics; Signal Transduction; Spine | 2020 |
Leptin and the intervertebral disc: a biochemical link exists between obesity, intervertebral disc degeneration and low back pain-an in vitro study in a bovine model.
The aim of this study was to identify the effects of leptin upon the intervertebral disc (IVD) and to determine whether these responses are potentiated within an environment of existing degeneration. Obesity is a significant risk factor for low back pain (LBP) and IVD degeneration. Adipokines, such as leptin, are novel cytokines produced primarily by adipose tissue and have been implicated in degradative and inflammatory processes. Obese individuals are known to have higher concentrations of serum leptin, and IVD cells express leptin receptors. We hypothesise that adipokines, such as leptin, mediate a biochemical link between obesity, IVD degeneration and LBP.. The bovine intervertebral disc was used as a model system to investigate the biochemical effects of obesity, mediated by leptin, upon the intervertebral disc. Freshly isolated cells, embedded in 3D alginate beads, were subsequently cultured under varying concentrations of leptin, alone or together with the pro-inflammatory cytokines TNF-α, IL-1β or IL-6. Responses in relation to production of nitric oxide, lactate, glycosaminoglycans and expression of anabolic and catabolic genes were analysed.. Leptin influenced the cellular metabolism leading particularly to greater production of proteases and NO. Addition of leptin to an inflammatory environment demonstrated a marked deleterious synergistic effect with greater production of NO, MMPs and potentiation of pro-inflammatory cytokine production.. Leptin can initiate processes involved in IVD degeneration. This effect is potentiated in an environment of existing degeneration and inflammation. Hence, a biochemical mechanism may underlie the link between obesity, intervertebral disc degeneration and low back pain. These slides can be retrieved under Electronic Supplementary Material. Topics: Animals; Cattle; Cells, Cultured; Cytokines; Disease Models, Animal; Inflammation Mediators; Interleukin-1beta; Intervertebral Disc; Intervertebral Disc Degeneration; Leptin; Low Back Pain; Obesity | 2019 |
Leptin regulates disc cartilage endplate degeneration and ossification through activation of the MAPK-ERK signalling pathway in vivo and in vitro.
Recent findings demonstrate that leptin plays a significant role in chondrocyte and osteoblast differentiation. However, the mechanisms by which leptin acts on cartilage endplate (CEP) cells to give rise to calcification are still unclear. The aim of this study was to evaluate the effects of leptin that induced mineralization of CEP cells in vitro and in vivo. We constructed a rat model of lumbar disc degeneration and determined that leptin was highly expressed in the presence of CEP calcification. Rat CEP cells treated with or without leptin were used for in vitro analysis using RT-PCR and Western blotting to examine the expression of osteocalcin (OCN) and runt-related transcription factor 2 (Runx2). Both OCN and Runx2 expression levels were significantly increased in a dose- and time-dependent manner. Leptin activated ERK1/2 and STAT3 phosphorylation in a time-dependent manner. Inhibition of phosphorylated ERK1/2 using targeted siRNA suppressed leptin-induced OCN and Runx2 expression and blocked the formation of mineralized nodules in CEP cells. We further demonstrated that exogenous leptin induced matrix mineralization of CEP cells in vivo. We suggest that leptin promotes the osteoblastic differentiation of CEP cells via the MAPK/ERK signal transduction pathway and may be used to investigate the mechanisms of disc degeneration. Topics: Animals; Calcification, Physiologic; Cartilage; Cell Differentiation; Core Binding Factor Alpha 1 Subunit; Disease Models, Animal; Intervertebral Disc Degeneration; Leptin; Lumbar Vertebrae; Male; MAP Kinase Signaling System; Motor Endplate; Osteocalcin; Osteogenesis; Phosphorylation; Rats, Sprague-Dawley; STAT3 Transcription Factor | 2018 |
Leptin downregulates aggrecan through the p38-ADAMST pathway in human nucleus pulposus cells.
The mechanistic basis of obesity-associated intervertebral disc degeneration (IDD) is unclear. Aberrant expression of aggrecan and its degrading enzymes ADAMTS-4 and ADAMTS-5 is implicated in the development of IDD. Here, we investigated the effect of leptin, a hormone with increased circulating levels in obesity, on the expression of aggrecan and ADAMTSs in primary human nucleus pulposus (NP) cells. Real-time PCR and Western blots showed that leptin increased the mRNA and protein expression of ADAMTS-4 and ADAMTS-5 and reduced the level of aggrecan in NP cells, accompanied by a prominent induction of p38 phosphorylation. Treatment of NP cells with SB203580 (a p38 inhibitor) abolished the regulation of aggrecan and ADAMTSs by leptin. Knockdown of ADAMTS-4 and ADAMTS-5 by siRNAs also attenuated the degradation of aggrecan in leptin-stimulated NP cells. To conclude, we demonstrated that leptin induces p38 to upregulate ADAMTSs and thereby promoting aggrecan degradation in human NP cells. These results provide a novel mechanistic insight into the molecular pathogenesis of obesity-associated IDD. Topics: ADAM Proteins; Adolescent; Adult; Aggrecans; Cell Line; Down-Regulation; Humans; Intervertebral Disc; Intervertebral Disc Degeneration; Leptin; Obesity; p38 Mitogen-Activated Protein Kinases; Phosphorylation; RNA, Messenger; Signal Transduction; Up-Regulation; Young Adult | 2014 |
The role of leptin on the organization and expression of cytoskeleton elements in nucleus pulposus cells.
Obesity is an important risk factor for intervertebral disc degeneration and leptin is a biomarker of obesity. However, the expression of leptin receptors has not been determined in disc tissue. It is not known whether leptin has a direct effect on the nucleus pulposus (NP) cells. To determine whether the NP tissues and cells express leptin receptors (OBRa and OBRb) and whether leptin affects the organization and the expression of major cytoskeletal elements in NP cells. Messenger RNA (mRNA) and protein levels of OBRa and OBRb were measured by real-time PCR and Western blot, respectively, in NP tissues and cells. Immunofluorescence and real-time PCR and Western blot were performed to investigate the effect of leptin on cytoskeleton reorganization and expression. Results show that mRNA and proteins of OBRa and OBRb were expressed in all NP tissues and cells, and that OBRb expression was correlated with patients' body weight. Increased expression of β-actin and reorganization of F-actin were evident in leptin-stimulated NP cells. Leptin also induced vimentin expression but had no effect on β-tubulin in NP cells. These findings provide novel evidence supporting the possible involvement of leptin in the pathogenesis of intervertebral disc degeneration. Topics: Actins; Adult; Body Mass Index; Cytoskeletal Proteins; Cytoskeleton; Female; Humans; Intervertebral Disc; Intervertebral Disc Degeneration; Leptin; Male; Middle Aged; Obesity; Receptors, Leptin; Tubulin; Vimentin | 2013 |