leptin has been researched along with Hypertension--Portal* in 6 studies
2 review(s) available for leptin and Hypertension--Portal
Article | Year |
---|---|
Adipokines in Liver Cirrhosis.
Liver fibrosis can progress to cirrhosis, which is considered a serious disease. The Child-Pugh score and the model of end-stage liver disease score have been established to assess residual liver function in patients with liver cirrhosis. The development of portal hypertension contributes to ascites, variceal bleeding and further complications in these patients. A transjugular intrahepatic portosystemic shunt (TIPS) is used to lower portal pressure, which represents a major improvement in the treatment of patients. Adipokines are proteins released from adipose tissue and modulate hepatic fibrogenesis. These proteins affect various biological processes that are involved in liver function, including angiogenesis, vasodilation, inflammation and deposition of extracellular matrix proteins. The best studied adipokines are adiponectin and leptin. Adiponectin protects against hepatic inflammation and fibrogenesis, and leptin functions as a profibrogenic factor. These and other adipokines are supposed to modulate disease severity in patients with liver cirrhosis. Consequently, circulating levels of these proteins have been analyzed to identify associations with parameters of hepatic function, portal hypertension and its associated complications in patients with liver cirrhosis. This review article briefly addresses the role of adipokines in hepatitis and liver fibrosis. Here, studies having analyzed these proteins in systemic blood in cirrhotic patients are listed to identify adipokines that are comparably changed in the different cohorts of patients with liver cirrhosis. Some studies measured these proteins in systemic, hepatic and portal vein blood or after TIPS to specify the tissues contributing to circulating levels of these proteins and the effect of portal hypertension, respectively. Topics: Adipokines; Adiponectin; Blood Proteins; Chemokines; Cytokines; Galectin 3; Galectins; GPI-Linked Proteins; Hepatitis; Humans; Hypertension, Portal; Intercellular Signaling Peptides and Proteins; Interleukin-6; Lectins; Leptin; Liver; Liver Cirrhosis; Nicotinamide Phosphoribosyltransferase; Portal Vein; Portasystemic Shunt, Transjugular Intrahepatic; Resistin | 2017 |
Liver fibrosis.
Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies. Topics: Angiotensin II; Animals; Humans; Hypertension, Portal; Leptin; Liver Cirrhosis; Liver Failure; Transforming Growth Factor beta | 2005 |
4 other study(ies) available for leptin and Hypertension--Portal
Article | Year |
---|---|
Hepatic endothelin-1 and endocannabinoids-dependent effects of hyperleptinemia in nonalcoholic steatohepatitis-cirrhotic rats.
Leptin, the ob gene product, is a protein released from adipocytes and has been detected in fibrotic and cirrhotic livers. Leptin in brain has an inhibitory effect on food intake. Nonalcoholic steatohepatitis (NASH) is characterized by hyperleptinemia. This study explores the possible mechanisms of hyperleptinemia in relation to increased intrahepatic resistance (IHR) and portal hypertension in NASH cirrhotic rats. NASH cirrhotic rats with hyperleptinemia were induced in Zucker (fa/fa) and lean rats by feeding the animals a high fat/methionine-choline-deficient (HF/MCD) diet with and without exogenous administration of recombinant leptin. Portal venous pressure (PVP), IHR, plasma and hepatic levels of various substances, histopathology of the liver, the hepatic hydroxyproline content, and the expression of various hepatic protein and messenger RNA (mRNA) were measured. Hepatic microcirculatory dysfunction and the vasoconstrictive response to endothelin-1 were also observed using a liver perfusion system and intravital microscopy. Finally, the effect of leptin on hepatic stellate cells (HSCs) was evaluated. Both in HF/MCD-Zucker and HF/MCD+leptin lean rats, significant hepatic fibrogenesis and cirrhosis, marked portal hypertension, microcirculatory dysfunction, an enhanced vasoconstrictive response to endothelin-1, and an increased IHR were found to be associated with higher levels of hepatic endothelin-1 and endocannabinoids, expression levels of the cannabinoid type 1 receptor, endothelin-1 type A receptor (ET(A) R), activator protein-1, transforming growth factor beta (TGF-β)(1), osteopontin, tumor necrosis factor alpha (TNF-α), leptin, and the leptin receptor (OBRb). Interestingly, acute incubation of leptin directly increases the expression of ET(A) R, OBRb and activator protein-1 in HSCs.. An HF/MCD diet and hyperleptinemia increase hepatic endocannabinoids production, promote hepatic fibrogenesis, enhance the hepatic vasoconstrictive response to endothelin-1, and aggravate hepatic microcirculatory dysfunction; these events subsequently increase IHR and portal hypertension in NASH cirrhotic rats. Topics: Animals; Biopsy, Needle; Body Weight; Cannabinoid Receptor Modulators; Diet, High-Fat; Disease Models, Animal; Disease Progression; Endocannabinoids; Endothelin-1; Fatty Liver; Hepatic Stellate Cells; Hypertension, Portal; Immunohistochemistry; Insulin Resistance; Kupffer Cells; Leptin; Liver; Microcirculation; Non-alcoholic Fatty Liver Disease; Random Allocation; Rats; Rats, Zucker; RNA, Messenger; Statistics, Nonparametric | 2012 |
Changes in adipokines after transjugular intrahepatic porto-systemic shunt indicate an anabolic shift in metabolism.
Decompressing the portal hypertension by inserting a transjugular intrahepatic porto-systemic shunt (TIPS) in undernourished liver cirrhosis patients results in gains in body weight. It is important to understand whether this reflects an advantageous or unfavourable shift in nutrition status. This to some extent can be judged from the changes in the patients' adipokine patterns. We, therefore, examined the circulating levels of the most important adipokines before and after the TIPS procedure.. Twenty-five liver cirrhosis patients were examined before TIPS insertion and followed for six months after the procedure. Their body composition was determined by the bioimpedance technique. The serum concentrations of adiponectin, retinol binding protein 4 (RBP4), and leptin were measured.. The TIPS procedure induced a 12% increase in body cell mass (P = 0.03) but did not change the body fat mass. At six months, serum adiponectin was increased by 60% (mean ± SD, 10.7 ± 6.1 vs. 16.9 ± 8.9 mg/L; P = 0.001), serum RBP4 was decreased by 45% (28.6 ± 20.0 vs. 16.3 ± 9.6 mg/L; P = 0.01), and the leptin levels remained unchanged.. The TIPS-related tissue build up was accompanied by increased adiponectin and decreased RBP4. Such changes are associated with an anabolic condition where the adipose tissue possesses residual capacity for energy storage. TIPS, therefore, can be considered to be nutritionally beneficial to cirrhosis patients. Topics: Adipokines; Adiponectin; Adipose Tissue; Adult; Aged; Body Composition; Electric Impedance; Female; Humans; Hypertension, Portal; Leptin; Liver Cirrhosis; Male; Malnutrition; Middle Aged; Nutritional Status; Portasystemic Shunt, Transjugular Intrahepatic; Retinol-Binding Proteins, Plasma | 2012 |
Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis.
Cirrhotic portal hypertension is characterized by increased hepatic oxidative stress, AA (arachidonic acid)-derived TXA(2) (thromboxane A(2)) release and exaggerated hepatic response to the α-adrenergic agonist MTX (methoxamine). Besides promoting hepatic fibrosis, the role of hyperleptinaemia in the modulation of vascular response in NASH (non-alcoholic steatohepatitis) rat livers remains unknown. The aim of the present study was to explore the possible links between hyperleptinaemia and the disarrangement in the hepatic microcirculation. NASH-cirrhosis with hyperleptinaemia was induced in lean rats by feeding with an HF/MCD (high-fat/methionine-choline-deficient) diet. Portal haemodynamics, various substances, protein and mRNA expression and PUFA (polyunsaturated fatty acid) composition were measured. Finally, the effects of leptin pre-infusion on TXA(2) release and concentration-PPP (portal perfusion pressure) curves in response to MTX were evaluated by simultaneously pre-treatment with the Kupffer cell inactivators GdCl(3) (gadolinium chloride) or EC (encapsulated clodronate), the TXS (TXA(2) synthase) inhibitor furegrelate, the TP receptor (TXA(2) receptor) antagonist SQ29548 and the dual TXS/TP receptor antagonist BM567. In HF/MCD+leptin-lean rats, cirrhosis-induced PPP and MTX hyper-responsiveness were associated with increased hepatic TXA(2) production, TBARS (thiobarbituric acid-reacting substances) levels and the AA (arachidonic acid)/n-3 PUFA ratio, and up-regulation of hepatic leptin, FAS (fatty acid synthase), NADPH oxidase subunits, TXS, TP receptor, TGFβ(1) (transforming growth factor β(1)) proteins and mRNAs. Pre-infusion of leptin significantly enhanced MTX-stimulated PPP elevation and TXA(2) release, which were attenuated by GdCl(3) and EC pre-treatment. Concomitantly pre-incubation with BM567, but not furegrelate or SQ29548, significantly abolished the leptin-enhanced MTX-stimulated increase in PPP in NASH-cirrhotic rats. Hyperleptinaemia plays an important role in hyper-responsiveness to MTX in NASH-cirrhotic rat livers with portal hypertension. The leptin-enhanced MTX-stimulated increase in PPP is mediated by increased oxidative stress and Kupffer-cell-activated AA-derived TXA(2) release in NASH-cirrhotic rats. Topics: Analysis of Variance; Animals; Arachidonic Acid; Benzofurans; Choline; Clodronic Acid; Diet, High-Fat; DNA Primers; Fatty Acids, Unsaturated; Fatty Liver; Gadolinium; Hemodynamics; Hypertension, Portal; Insulin Resistance; Kupffer Cells; Leptin; Methionine; Methoxamine; Microcirculation; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Rats; Receptors, Thromboxane A2, Prostaglandin H2; RNA, Messenger; Sulfonylurea Compounds; Thiobarbituric Acid Reactive Substances; Thromboxane A2 | 2012 |
Altered basal and postprandial plasma melatonin, gastrin, ghrelin, leptin and insulin in patients with liver cirrhosis and portal hypertension without and with oral administration of melatonin or tryptophan.
This investigation was designed to assess the effects of oral administration of melatonin (10 mg) and tryptophan (Trp) (500 mg) on fasting and postprandial plasma levels of melatonin, gastrin, ghrelin, leptin and insulin in 10 healthy controls and in age-matched patients with liver cirrhosis (LC) and portal hypertension. Fasting plasma melatonin levels in LC patients were about five times higher (102 +/- 15 pg/mL) than in healthy controls (22 +/- 3 pg/mL). These levels significantly increased postprandially in LC patients, but significantly less so in controls. Treatment with melatonin or L-Trp resulted in a further significant rise in plasma melatonin, both under fasting and postprandial conditions, particularly in LC patients. Moreover, plasma gastrin, ghrelin, leptin and insulin levels under fasting and postprandial conditions were significantly higher in LC subjects than in healthy controls and they further rose significantly after oral application of melatonin or Trp. This study shows that: (a) patients with LC and portal hypertension exhibit significantly higher fasting and postprandial plasma melatonin levels than healthy subjects; (b) plasma ghrelin, both in LC and healthy controls reach the highest values under fasting conditions, but decline postprandially, especially after oral application of melatonin or Trp; and (c) plasma melatonin, gastrin, ghrelin and insulin levels are altered significantly in LC patients with portal hypertension compared with that in healthy controls possibly due to their portal systemic shunting and decreased liver degradation. Topics: Administration, Oral; Basal Metabolism; Case-Control Studies; Data Interpretation, Statistical; Gastrins; Ghrelin; Humans; Hypertension, Portal; Insulin; Leptin; Liver Cirrhosis; Male; Melatonin; Peptide Hormones; Postprandial Period; Tryptophan | 2009 |