leptin has been researched along with Galactosemias* in 2 studies
2 other study(ies) available for leptin and Galactosemias
Article | Year |
---|---|
Fertility in classical galactosaemia, a study of N-glycan, hormonal and inflammatory gene interactions.
Classical Galactosaemia (CG) (OMIM #230400) is a rare inborn error of galactose metabolism caused by deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). Long-term complications persist in treated patients despite dietary galactose restriction with significant variations in outcomes suggesting epigenetic glycosylation influences. Primary Ovarian Insufficiency (POI) is a very significant complication affecting females with follicular depletion noted in early life. We studied specific glycan synthesis, leptin system and inflammatory gene expression in white blood cells as potential biomarkers of infertility in 54 adults with CG adults (27 females and 27 males) (age range 17-51 yr) on a galactose-restricted diet in a multi-site Irish and Dutch study. Gene expression profiles were tested for correlation with a serum Ultra-high Performance Liquid Chromatography (UPLC)-Immunoglobulin (IgG)-N-glycan galactose incorporation assay and endocrine measurements.. Twenty five CG females (93%) had clinical and biochemical evidence of POI. As expected, the CG female patients, influenced by hormone replacement therapy, and the healthy controls of both genders showed a positive correlation between log leptin and BMI but this correlation was not apparent in CG males. The strongest correlations between serum leptin levels, hormones, G-ratio (galactose incorporation assay) and gene expression data were observed between leptin, its gene and G-Ratios data (r. These results validate our previous findings and provide novel experimental evidence for dysregulation of genes LEP, LEPR, ANXA1, ICAM1 and SEPT4 for CG patients and combined with our findings of abnormalities of IgG glycosylation, hormonal and leptin analyses elaborate on the systemic glycosylation and cell signalling abnormalities evident in CG which likely influence the pathophysiology of POI. Topics: Adolescent; Adult; Female; Fucosyltransferases; Galactose; Galactosemias; Humans; Infertility; Intercellular Adhesion Molecule-1; Leptin; Middle Aged; N-Acetylglucosaminyltransferases; Primary Ovarian Insufficiency; Receptors, Leptin; Septins; Young Adult | 2018 |
Effects of temporary low-dose galactose supplements in children aged 5-12 y with classical galactosemia: a pilot study.
Classical galactosemia is caused by severe galactose-1-phosphate uridyltransferase deficiency. Despite life-long galactose-restriction, many patients experience long-term complications. Intoxication by galactose and its metabolites as well as over-restriction of galactose may contribute to the pathophysiology. We provided temporary low-dose galactose supplements to patients. We assessed tolerance and potential beneficial effects with clinical monitoring and measurement of biochemical, endocrine, and IgG N-glycosylation profiles.. We enrolled 26 patients (8.6 ± 1.9 y). Thirteen were provided with 300 mg of galactose/day followed by 500 mg for 2 wk each (13 patient controls).. We observed no clinical changes with the intervention. Temporary mild increase in galactose-1-phosphate occurred, but renal, liver, and bone biochemistry remained normal. Patients in the supplementation group had slightly higher leptin levels at the end of the study than controls. We identified six individuals as "responders" with an improved glycosylation pattern (decreased G0/G2 ratio, P < 0.05). There was a negative relationship between G0/G2 ratio and leptin receptor sOb-R in the supplementation group (P < 0.05).. Temporary low-dose galactose supplementation in children over 5 y is well tolerated in the clinical setting. It leads to changes in glycosylation in "responders". We consider IgG N-glycan monitoring to be useful for determining individual optimum galactose intake. Topics: Bone and Bones; Child; Child, Preschool; Cohort Studies; Dietary Supplements; Endocrine System; Female; Galactose; Galactosemias; Glycosylation; HEK293 Cells; Homozygote; Humans; Immunoglobulin G; Kidney; Lactose; Leptin; Liver; Male; Mutation; Pilot Projects; Receptors, Leptin; Signal Transduction | 2015 |