leptin and Fever

leptin has been researched along with Fever* in 17 studies

Reviews

2 review(s) available for leptin and Fever

ArticleYear
Orexigenic vs. anorexigenic peptides and feeding status in the modulation of fever and hypothermia.
    Frontiers in bioscience : a journal and virtual library, 2004, Sep-01, Volume: 9

    Prevailing changes in the feeding status or the nutritional status, in general, can modify the expression of many orexigenic and anorexigenic peptides, which influence hypothalamic functions. These peptides usually adjust body temperature according to anabolic (increased appetite with suppressed metabolic rate and body temperature) or catabolic (anorexia with enhanced metabolism and temperature) patterns. It was plausible to presume that such peptides contribute to regulated changes of body temperature (either fever or hypothermia) in systemic inflammation, particularly since anorexia is a common feature in inflammatory processes. No consistent, common, or uniform way of action was, however, demonstrated, which could have described the effects of various peptides. With the exception of cholecystokinin (CCK), all investigated peptides were devoid of real thermoregulatory actions: they influenced the metabolic rate (and consequently body temperature), but not the mechanisms of heat loss. Central CCK is indeed catabolic and may participate in febrigenesis. Leptin may activate various cytokines, catabolic peptides and may inhibit anabolic peptides, but it probably has no direct febrigenic effect and it is not indispensable in fever. Melanocortins and corticotropin-releasing factor provide catabolic adaptive mechanisms to food intake (diet induced thermogenesis) and environmental stress, respectively, but they act rather as endogenous antipyretic substances during systemic inflammation, possibly contributing to the mechanisms of limitation of fever. Bacterial lipopolysaccharides enhance the expression of most of these catabolic peptides. In contrast, neuropeptide Y (NPY) expression may not be changed, only its release is decreased at specific nuclei, a defective NPY effect may also contribute to the febrile rise in body temperature. The data provide no clear-cut explanation for the mechanism of hypothermia seen in systemic inflammation. According to speculations, a presumed, overflow,-type release of NPY from the hypothalamic nuclei, as well as a suppression of the activity of catabolic peptides, could possibly cause hypothermia. There are no cues, however, referring to the identity of factors that could trigger such changes during systemic inflammation in order to induce hypothermia.

    Topics: alpha-MSH; Animals; Body Temperature; Cholecystokinin; Corticotropin-Releasing Hormone; Eating; Endotoxins; Fever; Humans; Hypothermia; Inflammation; Leptin; Mice; Neuropeptide Y; Peptides; Rats

2004
Cytokines and the anorexia of infection: potential mechanisms and treatments.
    Biological research for nursing, 2000, Volume: 1, Issue:4

    Anorexia during infection is thought to be mediated by immunoregulatory cytokines such as interleukins 1 and 6 and tumor necrosis factor. This article reviews the potential mechanisms of action by which these cytokines are thought to suppress food intake during infection and examines the proposition that blocking of cytokine activity might be one approach to improving food intake of the infected host.

    Topics: Acute-Phase Reaction; Animals; Anorexia; Cholecystokinin; Cytokines; Dinoprostone; Disease Models, Animal; Eating; Fever; Gastroparesis; Humans; Infections; Inflammation Mediators; Leptin; Vagus Nerve

2000

Trials

2 trial(s) available for leptin and Fever

ArticleYear
Leptin mediates seasonal variation in some but not all symptoms of sickness in Siberian hamsters.
    Hormones and behavior, 2014, Volume: 66, Issue:5

    Many seasonally breeding species, including Siberian hamsters (Phodopus sungorus), exhibit seasonal variation in sickness responses. One hypothesis regarding the mechanism of this variation is that sickness intensity tracks an animal's energetic state, such that sickness is attenuated in the season that an animal has the lowest fat stores. Energetic state may be signaled via leptin, an adipose hormone that provides a signal of fat stores. Siberian hamsters respond to extended housing in short, winter-like days by reducing fat stores and leptin levels, relative to those housed in long, summer-like days. Sickness responses are also attenuated in short-day hamsters as compared to long-day hamsters. We hypothesized that leptin provides a physiological signal by which seasonally breeding animals modulate sickness responses, such that animals with higher leptin levels show increased sickness intensity. To test this, we provided short-day hamsters with a long-day-like leptin signal and assessed their responses to lipopolysaccharide (LPS), a sickness-inducing antigen. We compared these responses to short-day vehicle-, long-day vehicle-, and long-day leptin-treated hamsters. Unexpectedly, LPS induced a hypothermic response (rather than fever) in all groups. Short-day vehicle-treated hamsters exhibited the greatest LPS-induced hypothermia, and leptin treatment attenuated this response, making hypothermia more long-day-like. Contrary to our hypothesis, short-day leptin-treated hamsters showed the least pronounced LPS-induced anorexia among all groups. These results suggest that leptin may mediate some but not all aspects of seasonal sickness variation in this species. Future studies should be targeted at determining roles of other energetic hormones in regulating seasonal sickness response variation.

    Topics: Anhedonia; Animals; Anorexia; Behavior, Animal; Body Weight; Cricetinae; Fever; Illness Behavior; Infusion Pumps, Implantable; Leptin; Lipopolysaccharides; Male; Nesting Behavior; Phodopus; Photoperiod; Seasons

2014
Effects of clozapine and olanzapine on cytokine systems are closely linked to weight gain and drug-induced fever.
    Psychoneuroendocrinology, 2009, Volume: 34, Issue:1

    The second generation antipsychotics clozapine and olanzapine are known to cause weight gain. However, only clozapine is associated with drug-induced fever. Cytokines have been linked to the induction of both weight gain and drug-induced fever. We investigated these potential side effects of clozapine and olanzapine and studied their differential effects on cytokine secretion. Thirty patients suffering from schizophrenia, schizophreniform disorder or schizoaffective disorder were treated with either clozapine (mean modal dose: 266.7+/-77.9mg) or olanzapine (21.2+/-2.5mg) in a randomized, double-blind, 6-week study. Body mass index (BMI), tympanic temperature, and plasma levels of leptin and cytokines (tumor necrosis factor-alpha (TNF-alpha), soluble TNF receptor 1 and 2 (sTNFR-1/2), soluble interleukin-2 receptors (sIL-2R), interleukin-6) were determined weekly. BMI, leptin and cytokines significantly increased over time, except interleukin-6 and sTNFR-1 in the olanzapine group. All cytokines numerically increased compared to baseline already during the first week of treatment in both groups. Leptin, TNF-alpha, sTNFR-1, sTNFR-2 and sIL-2R levels correlated with the BMI. Five patients who received clozapine (33%) developed drug-induced fever (>/=38 degrees C). In these, interleukin-6 peak levels were significantly (p<0.01) higher than in those patients treated with clozapine who did not develop fever. In conclusion, increase of BMI appears to be related to clozapine's and olanzapine's similar effects on cytokine systems, whilst drug-induced fever appears to be related to clozapine's differential effects on interleukin-6.

    Topics: Adult; Antipsychotic Agents; Benzodiazepines; Body Mass Index; Clozapine; Cytokines; Double-Blind Method; Female; Fever; Humans; Leptin; Male; Middle Aged; Olanzapine; Psychiatric Status Rating Scales; Psychotic Disorders; Schizophrenia; Weight Gain

2009

Other Studies

13 other study(ies) available for leptin and Fever

ArticleYear
Inhibition of nitric oxide synthase or cystathionine gamma-lyase abolishes leptin-induced fever in male rats.
    Journal of thermal biology, 2023, Volume: 112

    Leptin is an adipokine that regulates energy balance and immune function. Peripheral leptin administration elicits prostaglandin E₂-dependent fever in rats. The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H₂S) are also involved in lipopolysaccharide (LPS)-induced fever response. However, there is no data in the literature indicating if these gasotransmitters have a role in leptin-induced fever response. Here, we investigate the inhibition of NO and H₂S enzymes neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), and cystathionine γ-lyase (CSE) in leptin-induced fever response, respectively. Selective nNOS inhibitor 7-nitroindazole (7-NI), selective iNOS inhibitor aminoguanidine (AG), and CSE inhibitor dl-propargylglycine (PAG) were administered intraperitoneally (ip). Body temperature (Tb), food intake, and body mass were recorded in fasted male rats. Leptin (0.5 mg/kg ip) induced a significant increase in Tb, whereas AG (50 mg/kg ip), 7-NI (10 mg/kg ip), or PAG (50 mg/kg ip) caused no changes in Tb. AG, 7-NI, or PAG abolished leptin increase in Tb. Our results highlight the potential involvement of iNOS, nNOS, and CSE in leptin-induced febrile response without affecting anorexic response to leptin in fasted male rats 24 h after leptin injection. Interestingly, all the inhibitors alone had the same anorexic effect induced by leptin. These findings have implications for understanding the role of NO and H₂S in leptin-induced febrile response.

    Topics: Animals; Body Temperature; Cystathionine gamma-Lyase; Enzyme Inhibitors; Fever; Gasotransmitters; Leptin; Male; Nitric Oxide; Nitric Oxide Synthase; Rats

2023
Adipokine levels and their association with clinical disease severity in patients with dengue.
    PLoS neglected tropical diseases, 2023, Volume: 17, Issue:9

    Adipokines have not been studied in acute dengue, despite their emerging role in inducing and regulating inflammation. Therefore, we sought to identify adipokine levels in patients with varying severities of acute dengue to understand their role in disease pathogenesis. We determined the levels of leptin, resistin, omentin, adiponectin, as well as IFNβ, and NS1 using quantitative ELISA in patients with dengue fever (DF = 49) and dengue haemorrhagic fever (DHF = 22) at admission (febrile phase) and at the time of discharge (recovery phase). The viral loads and serotypes of all samples were quantified using quantitative real-time RT-PCR. Resistin levels (p = 0.04) and omentin (p = 0.006) levels were significantly higher in patients who developed DHF. Omentin levels in the febrile phase also correlated with the AST (Spearman's r = 0.38, p = 0.001) and ALT levels (Spearman's r = 0.24, p = 0.04); as well as serum leptin levels with both AST (Spearman's r = 0.27, p = 0.02) and ALT (Spearman's r = 0.28, p = 0.02). Serum adiponectin levels in the febrile phase did not correlate with any of the other adipokines or with liver enzymes, but inversely correlated with CRP levels (Spearman's r = -0.31, p = 0.008). Although not significant (p = 0.14) serum IFNβ levels were lower in the febrile phase in those who progressed to develop DHF (median 0, IQR 0 to 39.4 pg/ml), compared to those who had DF (median 37.1, IQR 0 to 65.6 pg.ml). The data suggest that adipokines are likely to play a role in the pathogenesis of dengue, which should be further explored for the potential to be used as prognostic markers and as therapeutic targets.

    Topics: Adipokines; Adiponectin; Dengue; Fever; Humans; Leptin; Patient Acuity; Resistin

2023
Voluntary wheel running ameliorates select paclitaxel chemotherapy-induced sickness behaviors and associated melanocortin signaling.
    Behavioural brain research, 2021, 02-05, Volume: 399

    While chemotherapy remains a common cancer treatment, it is associated with debilitating side effects (e.g., anorexia, weight loss, and fatigue) that adversely affect patient quality of life and increase mortality. However, the mechanisms underlying taxane chemotherapy-induced side effects, and effective treatments to ameliorate them, are not well-established. Here, we tested the longitudinal relationship between a clinically-relevant paclitaxel regimen, inflammation, and sickness behaviors (loss of body mass, anorexia, fever, and fatigue) in adult, female mice. Furthermore, we sought to identify the extent to which voluntary exercise (wheel running) attenuates paclitaxel-induced sickness behaviors and underlying central pathways. Body mass and food intake decreased following six doses of chemotherapy treatment relative to vehicle controls, lasting less than 5 days after the last dose. Paclitaxel treatment also transiently decreased locomotion (open field test), voluntary wheel running, home-cage locomotion, and core body temperature without affecting motor coordination (rotarod task). Circulating interleukin (IL)-6 and hypothalamic Il1b gene expression remained elevated in chemotherapy-treated mice at least 3 days after the last dose. Exercise intervention did not ameliorate fatigue or inflammation, but hastened recovery from paclitaxel-induced weight loss. Body mass recovery was associated with the wheel running-induced recovery of body composition, paclitaxel-induced alterations to hypothalamic melanocortin signaling, and associated peripheral circulating hormones (ghrelin and leptin). The present findings demonstrate the benefits of exercise on faster recovery from paclitaxel-induced body mass loss and deficits in melanocortin signaling and suggests the development of therapies targeting the melanocortin pathway to reduce paclitaxel-induced weight loss.

    Topics: Animals; Antineoplastic Agents; Behavior, Animal; Cachexia; Cytokines; Fatigue; Female; Fever; Ghrelin; Illness Behavior; Inflammation; Leptin; Melanocortins; Mice, Inbred C57BL; Motor Activity; Paclitaxel; Physical Conditioning, Animal; Signal Transduction

2021
Elucidating the role of leptin in systemic inflammation: a study targeting physiological leptin levels in rats and their macrophages.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2017, Nov-01, Volume: 313, Issue:5

    Topics: Animals; Cytokines; Fever; Food Deprivation; Inflammation; Leptin; Lipopolysaccharides; Macrophages; Male; Rats, Wistar

2017
Leptin modulates the late fever response to LPS in diet-induced obese animals.
    Brain, behavior, and immunity, 2014, Volume: 42

    Leptin is an important modulator of both inflammation and energy homeostasis, making it a key interface between the inflammatory response to pathogenic stimuli and the energy status of the host. In previous studies we demonstrated that sickness responses to systemic immune challenge, including fever, are significantly exacerbated in diet induced obese animals. To investigate whether this exacerbation is functionally linked to the obesity associated increase in circulating levels of leptin, a species-specific leptin antiserum (LAS) was used to neutralize endogenous leptin in diet-induced obese adult male Wistar rats treated with a single intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) (100μg/kg). LAS significantly reduced the magnitude of the later phases of the fever response, and attenuated the circulating levels of IL-6, IL-1ra and bioactivity of leptin in the obese animals. In addition, the antiserum significantly attenuated the hypothalamic expression of IL-1ß, IκBα, COX2, SOCS3 and IL-6 in both lean and obese rats 10h after the LPS injection and NF-IL6 in the hypothalamus of obese rats only. The relatively late rise in brain IL-6 suggested a role in mediating the extended fever response in obese animals and we tested this by neutralizing brain IL-6 using an IL6-AS injected intracerebroventricularly (4μl, icv). The IL6-AS significantly but transiently (between 9h and 12h post LPS) reduced the late fever response of obese rats. These results demonstrate that leptin plays an important part in modulating the late portion of the fever response to LPS, likely through the induction of hypothalamic IL-6 in obese animals.

    Topics: Animals; Cyclooxygenase 2; Diet, High-Fat; Fever; Hypothalamus; Interleukin-1beta; Interleukin-6; Leptin; Lipopolysaccharides; Male; Obesity; Rats; Rats, Wistar; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins

2014
Acute starvation alters lipopolysaccharide-induced fever in leptin-dependent and -independent mechanisms in rats.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2010, Volume: 299, Issue:6

    A decrease in leptin levels with the onset of starvation triggers a myriad of physiological responses including immunosuppression and hypometabolism/hypothermia, both of which can counteract the fever response to pathogens. Here we examined the role of leptin in LPS-induced fever in rats that were fasted for 48 h prior to inflammation with or without leptin replacement (12 μg/day). The preinflammation fasting alone caused a progressive hypothermia that was almost completely reversed by leptin replacement. The LPS (100 μg/kg)-induced elevation in core body temperature (T(core)) was attenuated in the fasted animals at 2-6 h after the injection, an effect that was not reversed by leptin replacement. Increasing the LPS dose to 1,000 μg/kg caused a long-lasting fever that remained unabated for up to 36 h after the injection in the fed rats. This sustained response was strongly attenuated in the fasted rats whose T(core) started to decrease by 18 h after the injection. Leptin replacement almost completely restored the prolonged fever. The attenuation of the prolonged fever in the fasted animals was accompanied by the diminution of proinflammatory PGE(2) in the cerebrospinal fluid and mRNA of proopiomelanocortin (POMC) in the hypothalamus. Leptin replacement prevented the fasting-induced reduction of POMC but not PGE(2). Moreover, the leptin-dependent fever maintenance correlated closely with hypothalamic POMC levels (r = 0.77, P < 0.001). These results suggest that reduced leptin levels during starvation attenuate the sustained fever response by lowering hypothalamic POMC tone but not PGE(2) synthesis.

    Topics: Analysis of Variance; Animals; Body Temperature; Enzyme-Linked Immunosorbent Assay; Female; Fever; Food Deprivation; Hypothalamus; Leptin; Lipopolysaccharides; Prostaglandins; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Telemetry

2010
Hindbrain leptin stimulation induces anorexia and hyperthermia mediated by hindbrain melanocortin receptors.
    Endocrinology, 2009, Volume: 150, Issue:4

    Of the central nervous system receptors that could mediate the energy balance effects of leptin, those of the hypothalamic arcuate nucleus receive the greatest attention. Melanocortin receptors (MC-Rs) contribute to the feeding and energetic effects of hypothalamically delivered leptin. Energy balance effects of leptin are also mediated by extrahypothalamic neurons including the hindbrain nucleus tractus solitarius. Hindbrain leptin receptors play a role in leptin's anorectic effects, but their contribution to its energetic effects and their functional interaction with melanocortin systems within the hindbrain remains unexplored. Here rats implanted with telemetric devices for recording energetic/cardiovascular responses were examined to determine whether: 1) hindbrain (fourth ventricular) leptin receptor stimulation triggers energetic and cardiovascular effects, 2) these effects are altered by a 6-wk high-fat diet maintenance, and 3) hindbrain MC-Rs mediate the thermogenic, cardiovascular, and anorexic effects of hindbrain leptin delivery. Results show that hindbrain leptin receptor stimulation produced long-lasting (>6 h) increases in core temperature and heart rate and also decreased food intake and body weight. These responses were not altered by high-fat maintenance, in contrast to what has been reported for forebrain leptin delivery. Fourth ventricular pretreatment with MC-R antagonist SHU 9119 completely abolished the hyperthermia, anorexia, and body weight loss seen with hindbrain-directed leptin but had no effects of its own. These data highlight a role for hindbrain leptin receptors in the initiation of energetic and anorexic responses and show that MCRs are part of the downstream mediation of hindbrain leptin-induced energy balance effects, paralleling effects observed for hypothalamic leptin receptors.

    Topics: Animals; Anorexia; Body Temperature; Body Weight; Dietary Fats; Eating; Energy Metabolism; Fever; Glucose Tolerance Test; Heart Rate; Injections; Leptin; Male; Melanocyte-Stimulating Hormones; Rats; Rats, Sprague-Dawley; Receptors, Melanocortin; Rhombencephalon

2009
A reappraisal on the ability of leptin to induce fever.
    Physiology & behavior, 2009, Jun-22, Volume: 97, Issue:3-4

    Leptin is often regarded as a mediator of fever, even though an in-depth analysis of the dose-dependent effects of leptin on body temperature (T(b)), pro-inflammatory cytokines, and circulating leptin has never been performed. In the present study, such an analysis was performed in rats that were food deprived (lower baseline levels of leptin) or free feeding (higher baseline levels of leptin). In a relatively cool environment (22 degrees C), rats deprived of food for 24 h exhibited mild (approximately 0.5 degrees C) hypothermia. Leptin infusion (250 microg/kg iv) elevated the T(b) of the food-deprived rats to a normothermic level, an effect that peaked (120 min post-infusion) when plasma leptin was at a level (approximately 8 ng/mL) often found in leptin-responsive subjects. Increasing the leptin dose to 1000 microg/kg did not produce any further (febrile) elevation in the T(b) of food-deprived rats. The anti-hypothermic effect of leptin in food-deprived rats was not associated with any rise in the plasma levels of the pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-6. In free-feeding rats kept in a cooler (22 degrees C) or warmer (28 degrees C) environment, leptin infusion failed to alter T(b) or to produce any surge in plasma TNF-alpha or IL-6, even when the dose infused (3500 microg/kg iv) resulted in excessive, non-physiological rises in plasma leptin (approximately 542 ng/mL at 30 min; approximately 75 ng/mL at 120 min post-infusion). In contrast, free-feeding rats in the same experimental set-up were able to respond to a low dose (2 microg/kg iv) of IL-1beta with a typical biphasic fever, which was associated with surges in plasma TNF-alpha and IL-6. Collectively, our data show that an acute rise in plasma leptin to a level within or fairly above the physiological range does not induce fever. These results challenge the idea that leptin may be a mediator of fever.

    Topics: Analysis of Variance; Animals; Body Temperature; Body Weight; Dose-Response Relationship, Drug; Feeding Behavior; Fever; Food Deprivation; Interleukin-1beta; Interleukin-6; Leptin; Male; Rats; Rats, Wistar; Time Factors; Tumor Necrosis Factor-alpha

2009
Atypical protein kinase C activity in the hypothalamus is required for lipopolysaccharide-mediated sickness responses.
    Endocrinology, 2009, Volume: 150, Issue:12

    By activating the Toll-like receptor 4-nuclear factor-kappaB signal transduction pathway, the bacterial endotoxin lipopolysaccharide (LPS) induces anorexia, weight loss, fever, and other components of the sickness response. By comparison, the hormones leptin and insulin cause anorexia without sickness via a central mechanism involving the phosphatidylinositol-3 kinase signaling pathway. In the current study, we investigated whether a common Toll-like receptor 4 and phosphatidylinositol-3 kinase signaling intermediate, atypical protein kinase Czeta/lambda (aPKC), contributes to changes of energy balance induced by these stimuli. Immunohistochemistry analysis revealed that aPKC is expressed in the arcuate and paraventricular nuclei of the hypothalamus, key sites of leptin, insulin, and LPS action. Although administration of LPS, insulin, and leptin each acutely increased hypothalamic aPKC activity at doses that also reduce food intake, LPS treatment caused over 10-fold greater activation of hypothalamic a PKC signaling than that induced by leptin or insulin. Intracerebroventricular pretreatment with an aPKC inhibitor blocked anorexia induced by LPS but not insulin or leptin. Similarly, LPS-induced hypothalamic inflammation (as judged by induction of proinflammatory cytokine gene expression) and neuronal activation in the paraventricular nucleus (as judged by c-fos induction) were reduced by central aPKC inhibition. Although intracerebroventricular aPKC inhibitor administration also abolished LPS-induced fever, it had no effect on sickness-related hypoactivity or weight loss. We conclude that although hypothalamic aPKC signaling is not required for food intake inhibition by insulin or leptin, it plays a key role in inflammatory anorexia and fever induced by LPS.

    Topics: Animals; Anorexia; Cell Line; Cytokines; Eating; Fever; Gene Expression; Humans; Hypothalamus; Immunohistochemistry; Inflammation; Insulin; Isoenzymes; Leptin; Lipopolysaccharides; Male; Neurons; Paraventricular Hypothalamic Nucleus; Protein Kinase C; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction

2009
PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2009, Nov-25, Volume: 29, Issue:47

    The adipose-derived hormone, leptin, was discovered over 10 years ago, but only now are we unmasking its downstream pathways which lead to reduced energy intake (feeding) and increased energy expenditure (thermogenesis). Recent transgenic models have challenged the long-standing supposition that the hypothalamic arcuate nucleus (Arc) is omnipotent in the central response to leptin, and research focus is beginning to shift to examine roles of extra-arcuate sites. Dhillon et al. (2006) demonstrated that targeted knock out of the signaling form of the leptin receptor (lepr-B) in steroidogenic factor 1 (SF-1) cells of the hypothalamic ventromedial nucleus (VMN) produces obesity of a similar magnitude to the pro-opiomelanocortin (POMC)-driven lepr-B deleted mouse, via a functionally distinct mechanism. These findings reveal that SF-1 cells of the VMN could be equally as important as POMC cells in mediating leptin's anti-obesity effects. However, the identification of molecular and cellular correlates of this relationship remains tantalizingly unknown. Here, we have shown that mRNA expression of the VMN-expressed neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is regulated according to energy status and that it exerts catabolic effects when administered centrally to mice. Furthermore, we have shown that SF-1 and PACAP mRNAs are colocalized in the VMN, and that leptin signaling via lepr-B is required for normal PACAP expression in these cells. Finally, blocking endogenous central PACAP signaling with the antagonist PACAP(6-38) markedly attenuates leptin-induced hypophagia and hyperthermia in vivo. Thus, it appears that PACAP is an important mediator of central leptin effects on energy balance.

    Topics: Animals; Appetite Regulation; Body Weight; Energy Metabolism; Fever; Leptin; Male; Mice; Neurons; Peptide Fragments; Pituitary Adenylate Cyclase-Activating Polypeptide; Receptors, Leptin; Signal Transduction; Steroidogenic Factor 1; Ventromedial Hypothalamic Nucleus

2009
Interleukin-6 and leptin mediate lipopolysaccharide-induced fever and sickness behavior.
    Physiology & behavior, 2006, Sep-30, Volume: 89, Issue:2

    Pro-inflammatory cytokines, interleukin (IL)-1beta, IL-6 and tumor necrosis factor-alpha (TNF-alpha) synthesized by activated macrophages and monocytes in response to administration of lipopolysaccharide (LPS), are considered important mediators of fever and sickness behavior. We administered rat-specific antisera for TNF-alpha, IL-1beta, IL-6 and leptin, to determine the involvement of peripherally released cytokines in LPS-induced fever and sickness behavior, measured as suppression of voluntary wheel-running and food intake. Male Sprague-Dawley rats (approximately 200 g) selected for their predisposition to spontaneously run on running wheels were anaesthetized with a combination of ketamine hydrochloride (80 mg/kg i.m.) and xylazine (4 mg/kg i.m.) and implanted intra-abdominally with temperature-sensitive radiotelemeters. Rats were injected intraperitoneally with anti-rat sera to one of the following, TNF-alpha, IL-1beta, IL-6 or leptin or with pre-immune sheep serum, followed by a subcutaneous injection of either LPS (250 microg/kg) or sterile saline. Lipopolysaccharide administration induced a approximately 1.3 (0.2) degrees C fever lasting approximately 10 h and reduced voluntary running by 93 (8.6)% and food intake by 51 (21.3)% compared to the saline response (ANOVA, P<0.05). Injection of anti-IL-6 serum or anti-leptin serum abolished the LPS-induced fever, anti-TNF-alpha serum affected only the early phase of fever and anti-IL-1beta serum had no effect on fever (ANOVA, P<0.05). LPS-induced suppression of voluntary running and food intake were attenuated in rats receiving anti-IL-6 serum, while the decrease in food intake was totally abolished in rats receiving anti-leptin serum (ANOVA, P<0.05). Injection of anti-TNF-alpha or anti-IL-1beta serum had no effect on LPS-induced sickness behavior. Peripherally released IL-6 and leptin therefore appear to be important in regulating LPS-induced fever and sickness behavior.

    Topics: Analysis of Variance; Animals; Behavior, Animal; Feeding Behavior; Fever; Interleukin-1; Interleukin-6; Leptin; Lipopolysaccharides; Male; Motor Activity; Rats; Rats, Sprague-Dawley; Sick Role; Tumor Necrosis Factor-alpha

2006
Circulating leptin mediates lipopolysaccharide-induced anorexia and fever in rats.
    The Journal of physiology, 2004, Nov-15, Volume: 561, Issue:Pt 1

    Anorexia and fever are important features of the host's response to inflammation that can be triggered by the bacterial endotoxin lipopolysaccharide (LPS) and the appetite suppressant leptin. Previous studies have demonstrated that LPS induces leptin synthesis and secretion in the periphery, and that the action of leptin on appetite suppression and fever are dependent on brain interleukin (IL)-1beta. However, the role of leptin as a neuroimmune mediator of LPS-induced inflammation has not been fully elucidated. To address this issue, we neutralized circulating leptin using a leptin antiserum (LAS) and determined how this neutralization affected LPS-induced anorexia, fever and hypothalamic IL-1beta. Adult male rats were separated into four treatment groups, namely LPS + normal sheep serum (NSS), LPS + LAS, saline + LAS and saline + NSS. Intraperitoneal injection of LPS (100 microg kg(-1)) induced a significant reduction in food intake and body weight, which were significantly reversed in the presence of LAS (1 ml kg(-1)), 8 and 24 h after treatment. In addition, LPS-induced fever was significantly attenuated by LAS over the duration of the fever response (8 h). Lipopolysaccharide induced an increase of circulating IL-6, another potential circulating pyrogen, which was not affected by neutralization of leptin at 2 h. Interleukin-1beta mRNA at 1 and 8 h, and IL-1 receptor antagonist (ra) at 2 h were significantly upregulated in the hypothalamus of LPS-treated animals. The induction of these cytokines was attenuated in the presence of LAS. These results are the first to demonstrate that leptin is a circulating mediator of LPS-induced anorexia and fever, probably through a hypothalamic IL-1beta-dependent mechanism.

    Topics: Animals; Anorexia; Antibodies; Body Weight; Eating; Fever; Hypothalamus; Interleukin 1 Receptor Antagonist Protein; Interleukin-1; Interleukin-6; Leptin; Lipopolysaccharides; Male; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sialoglycoproteins

2004
Melatonin regulates energy balance and attenuates fever in Siberian hamsters.
    Endocrinology, 2002, Volume: 143, Issue:7

    Fever is considered an important host defense response but requires significant metabolic energy. During winter many animals must balance immune function with competing physiological demands (i.e. thermoregulation) to survive. Winterlike patterns of melatonin secretion induce a number of energy-saving adaptations. For instance, Siberian hamsters attenuate the duration of fever during simulated short winter day lengths, presumably to conserve energy. To determine the proximate role of melatonin in mediating this photoperiodic response, hamsters housed in long days were injected with saline or melatonin 4 h before lights off for either 1 or 6 wk and assessed for fever following injections of bacterial lipopolysaccharide. Fever duration was attenuated (32%) only in hamsters that decreased body mass, increased cortisol, and exhibited gonadal regression in response to 6 wk of melatonin. Because melatonin-treated hamsters lost significant body mass, fever was assessed in a second long-day group following ad libitum food intake, food restriction, or 24-h food deprivation. Food restriction sufficient to reduce body mass by approximately 25%, but not to reduce leptin, did not influence fever, and 24-h food deprivation virtually abolished fever. Our data suggest that long-term exposure to long-duration melatonin signals is required to induce the physiological changes necessary for short-day immune responses, perhaps involving interactions with hormones such as cortisol and leptin.

    Topics: Animals; Antioxidants; Body Temperature; Body Weight; Cricetinae; Darkness; Eating; Energy Metabolism; Fever; Hydrocortisone; Leptin; Lipids; Lipopolysaccharides; Male; Melatonin; Organ Size; Phodopus; Photoperiod; Radioimmunoassay; Testis; Testosterone

2002