leptin has been researched along with Cicatrix--Hypertrophic* in 2 studies
1 review(s) available for leptin and Cicatrix--Hypertrophic
Article | Year |
---|---|
LEP and LEPR are possibly a double-edged sword for wound healing.
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs. Topics: Animals; Cicatrix, Hypertrophic; Humans; Leptin; Receptors, Leptin; Skin; Wound Healing | 2023 |
1 other study(ies) available for leptin and Cicatrix--Hypertrophic
Article | Year |
---|---|
Immunohistochemical Evaluation of Leptin Expression in Wound Healing: A Clue to Exuberant Scar Formation.
Leptin has been recognized as an important factor for promoting normal cutaneous wound healing. The aim of this work was to explore leptin expression in keloid and hypertrophic scars (HS) compared with surgical scars and normal skin. The relationship of this expression with clinicopathologic parameters of studied cases was also evaluated. Using immunohistochemical techniques, leptin was analyzed in skin biopsies of 60 nonobese subjects without metabolic syndrome who presented with keloids (20), HS (20), and surgical scars (20). Twenty normal skin samples, from age-matched, sex-matched, and body mass index-matched subjects, were enrolled as a control group. Leptin showed positive immunoreactivity in epidermis in all cases of surgical scars and keloids and in 75% of HS cases. Dermal expression in fibroblasts, inflammatory cells, and endothelial cells was positive in all cases of surgical scars and keloids and in 70% of HS cases. Leptin was overexpressed in keloids and HS compared with normal skin in epidermis (P<0.001 for both) and dermis (P<0.001 for both) and to surgical scars both in epidermis (P=0.0006, P=0.01, respectively) and dermis (P=0.0001, P=0.001, respectively). Higher leptin H score was significantly associated with older age (P=0.02) and positive family history (P=0.002) in keloid cases and with axial site in keloid and HS cases (P=0.001, P=0.02, respectively). Significant positive correlation was noted between epidermal and dermal leptin H scores in keloids (r=+0.37, P=0.04) and HS (r=+0.39, P=0.02). This may be due to epithelial-mesenchymal interactions in scar pathogenesis. In conclusion, in situ leptin overexpression may increase the possibility of keloid and HS occurrence through altered cytokine production and prolonged healing phases with excessive deposition and delayed collagen degradation. This may open an avenue for research for new therapeutic modalities based on its inhibition. Topics: Adolescent; Adult; Case-Control Studies; Cicatrix, Hypertrophic; Female; Humans; Immunohistochemistry; Keloid; Leptin; Male; Prospective Studies; Wound Healing; Young Adult | 2016 |