lenvatinib has been researched along with Hypoxia* in 3 studies
3 other study(ies) available for lenvatinib and Hypoxia
Article | Year |
---|---|
Hepatocellular carcinoma cells loss lenvatinib efficacy in vitro through autophagy and hypoxia response-derived neuropilin-1 degradation.
Despite pharmacological advances such as lenvatinib approval, therapeutic failure of hepatocellular carcinoma (HCC) remains a big challenge due to the complexity of its underlying molecular mechanisms. Neuropilin-1 (NRP1) is a co-receptor involved in several cellular processes associated to chemoresistance development. Since both the double-edged process of autophagy and hypoxia-derived response play crucial roles in the loss of therapeutic effectiveness, herein we investigated the interplay among NRP1, autophagy and hypoxia in development of lenvatinib resistance in HCC cell lines. We first analyzed NRP1 expression levels in human HCC samples from public databases, found significantly increased NRP1 expression in human HCC samples as well as its correlation with advanced tumor and metastasis stages. Among 3 HCC cell lines (HepG2, Huh-7 and Hep3B), Hep3B and Huh-7 cells showed significantly increased NRP1 expression levels and cell migration ability together with higher susceptibility to lenvatinib. We demonstrated that NRP1 gene silencing significantly enhanced the anticancer effects of lenvatinib on Hep3B and Huh-7 cells. Furthermore, lenvatinib suppressed NRP1 expression through promoting autophagy in Hep3B and Huh-7 cells; co-treatment with bafilomycin A1 attenuated the antitumor effects of lenvatinib, and NRP1 silencing prevented this loss of in vitro effectiveness of lenvatinib even in the presence of bafilomycin A1. In addition, exposure to a hypoxic microenvironment significantly decreased NRP1 expression through autophagy in Hep3B and Huh-7 cells. Under hypoxia, HIF-1α directly modulated NRP1 expression; HIF-1α silencing not only enhanced the anticancer effects of combined lenvatinib and hypoxia, but also prevented the loss of effectiveness caused by bafilomycin A1, highlighting the potential role of HIF-1α-derived hypoxia response in the adaptive cellular response to lenvatinib and promoting resistance acquisition by autophagy modulation. Overall, NRP1 may constitute a potential therapeutic target to prevent lenvatinib failure derived from a hypoxia-associated modulation of autophagy in advanced HCC. Topics: Autophagy; Carcinoma, Hepatocellular; Cell Line, Tumor; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; Humans; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Liver Neoplasms; Neuropilin-1 | 2023 |
Tumor-derived insulin-like growth factor-binding protein-1 contributes to resistance of hepatocellular carcinoma to tyrosine kinase inhibitors.
Antiangiogenic tyrosine kinase inhibitors (TKIs) provide one of the few therapeutic options for effective treatment of hepatocellular carcinoma (HCC). However, patients with HCC often develop resistance toward antiangiogenic TKIs, and the underlying mechanisms are not understood. The aim of this study was to determine the mechanisms underlying antiangiogenic TKI resistance in HCC.. We used an unbiased proteomic approach to define proteins that were responsible for the resistance to antiangiogenic TKIs in HCC patients. We evaluated the prognosis, therapeutic response, and serum insulin-like growth factor-binding protein-1 (IGFBP-1) levels of 31 lenvatinib-treated HCC patients. Based on the array of results, a retrospective clinical study and preclinical experiments using mouse and human hepatoma cells were conducted. Additionally, in vivo genetic and pharmacological gain- and loss-of-function experiments were performed.. In the patient cohort, IGFBP-1 was identified as the signaling molecule with the highest expression that was inversely associated with overall survival. Mechanistically, antiangiogenic TKI treatment markedly elevated tumor IGFBP-1 levels via the hypoxia-hypoxia inducible factor signaling. IGFBP-1 stimulated angiogenesis through activation of the integrin α5β1-focal adhesion kinase pathway. Consequently, loss of IGFBP-1 and integrin α5β1 by genetic and pharmacological approaches re-sensitized HCC to lenvatinib treatment.. Together, our data shed light on mechanisms underlying acquired resistance of HCC to antiangiogenic TKIs. Antiangiogenic TKIs induced an increase of tumor IGFBP-1, which promoted angiogenesis through activating the IGFBP-1-integrin α5β1 pathway. These data bolster the application of a new therapeutic concept by combining antiangiogenic TKIs with IGFBP-1 inhibitors. Topics: Animals; Carcinoma, Hepatocellular; Humans; Hypoxia; Insulin-Like Growth Factor Binding Protein 1; Integrin alpha5beta1; Liver Neoplasms; Mice; Proteomics; Retrospective Studies; Somatomedins; Tyrosine Kinase Inhibitors | 2023 |
NIR diagnostic imaging of triple-negative breast cancer and its lymph node metastasis for high-efficiency hypoxia-activated multimodal therapy.
Triple-negative breast cancer (TNBC) possesses special biological behavior and clinicopathological characteristics, which is highly invasive and propensity to metastasize to lymph nodes, leading to a worse prognosis than other types of breast cancer. Thus, the development of an effective therapeutic method is significant to improve the survival rate of TNBC patients.. In this work, a liposome-based theranostic nanosystem (ILA@Lip) was successfully prepared by simultaneously encapsulating IR 780 as the photosensitizer and lenvatinib as an anti-angiogenic agent, together with banoxantrone (AQ4N) molecule as the hypoxia-activated prodrug. The ILA@Lip can be applied for the near-infrared (NIR) fluorescence diagnostic imaging of TNBC and its lymph node metastasis for multimodal therapy. Lenvatinib in ILA@Lip can inhibit angiogenesis by cutting oxygen supply, thereby leading to enhanced hypoxia levels. Meanwhile, large amounts of reactive oxygen species (ROS) were produced while IR 780 was irradiated by an 808 nm laser, which also rapidly exhausted oxygen in tumor cells to worsen tumor hypoxia. Through creating an extremely hypoxic in TNBC, the conversion of non-toxic AQ4N to toxic AQ4 was much more efficiency for hypoxia-activated chemotherapy. Cytotoxicity assay of ILA@Lip indicated excellent biocompatibility with normal cells and tissues, but showed high toxicity in hypoxic breast cancer cells. Also, the in vivo tumors treated by the ILA@Lip with laser irradiation were admirably suppressed in both subcutaneous tumor model and orthotopic tumor models.. Utilizing ILA@Lip is a profound strategy to create an extremely hypoxic tumor microenvironment for higher therapeutic efficacy of hypoxia-activated chemotherapy, which realized collective suppression of tumor growth and has promising potential for clinical translation. Topics: Humans; Hypoxia; Lymphatic Metastasis; Optical Imaging; Oxygen; Triple Negative Breast Neoplasms; Tumor Microenvironment | 2023 |