lenabasum has been researched along with Disease-Models--Animal* in 7 studies
1 review(s) available for lenabasum and Disease-Models--Animal
Article | Year |
---|---|
Cannabinoids, endocannabinoids, and related analogs in inflammation.
This review covers reports published in the last 5 years on the anti-inflammatory activities of all classes of cannabinoids, including phytocannabinoids such as tetrahydrocannabinol and cannabidiol, synthetic analogs such as ajulemic acid and nabilone, the endogenous cannabinoids anandamide and related compounds, namely, the elmiric acids, and finally, noncannabinoid components of Cannabis that show anti-inflammatory action. It is intended to be an update on the topic of the involvement of cannabinoids in the process of inflammation. A possible mechanism for these actions is suggested involving increased production of eicosanoids that promote the resolution of inflammation. This differentiates these cannabinoids from cyclooxygenase-2 inhibitors that suppress the synthesis of eicosanoids that promote the induction of the inflammatory process. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Cannabis; Disease Models, Animal; Dronabinol; Drug Evaluation, Preclinical; Eicosanoids; Endocannabinoids; Fibromyalgia; Glycine; Humans; Inflammation; Mice; Plant Oils; Randomized Controlled Trials as Topic; Rats; Receptors, Cannabinoid | 2009 |
6 other study(ies) available for lenabasum and Disease-Models--Animal
Article | Year |
---|---|
Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung.
Ajulemic acid (AjA) is a synthetic analogue of tetrahydrocannabinol that can prevent and limit progression of skin fibrosis in experimental systemic sclerosis. In this study we investigated whether AjA also prevents and modulates lung fibrosis induced by bleomycin (BLM) when administered in mice during the inflammatory or the fibrogenic phase of the model.. The anti-inflammatory and antifibrotic efficacy of AjA was evaluated in DBA/2 mice treated orally once a day starting either at day 0 (preventive treatment) or at day 8 (therapeutic treatment) after a single intratracheal instillation of BLM. AjA was given at a dose of 1 mg/kg or 5 mg/kg. Mice were sacrificed at day 8, 14 and 21 after BLM and lungs were processed for histology and morphometry, and examined for HO-proline content and for the expression of transforming growth factor beta 1 (TGF-β1), phosphorylated Smad2/3 (pSMAD2/3), connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA) and peroxisome proliferator-activated receptor-gamma (PPAR-γ).. In the 1st week after BLM challenge, an acute inflammation characterized by neutrophil and macrophage accumulation was the main change present in lung parenchyma. The "switch" between inflammation and fibrosis occurs between day 8 and 14 after BLM instillation and involves the bronchi and vasculature. In the subsequent week (at day 21 after BLM instillation) bronchiolocentric fibrosis with significant increase of tissue collagen develops. The fibrotic response evaluated by morphometry and quantified as HO-proline in lung tissue at day 21 after BLM treatment was significantly reduced in mice receiving either AjA in the inflammatory or in early fibrogenic phase. AjA induces marked change in the expression pattern of products implicated in fibrogenesis, such as TGF-β1, pSMAD2/3, CTGF and α-SMA. In addition, AjA increases significantly the number of PPAR-γ positive cells and its nuclear localization.. AjA treatment, starting either at day 0 or at day 8 after BLM challenge, counteracts the progression of pulmonary fibrosis. The anti-fibrotic effectiveness of AjA is irrespective of timing of compound administration. Further clinical studies are necessary to establish whether AjA may represent a new therapeutic option for treating fibrotic lung diseases. Topics: Actins; Administration, Inhalation; Animals; Anti-Inflammatory Agents; Bleomycin; Collagen; Connective Tissue Growth Factor; Cytoprotection; Disease Models, Animal; Disease Progression; Dronabinol; Drug Administration Schedule; Hydroxyproline; Lung; Male; Mice, Inbred DBA; Phosphorylation; PPAR gamma; Pulmonary Fibrosis; Signal Transduction; Smad2 Protein; Smad3 Protein; Time Factors; Transforming Growth Factor beta1 | 2016 |
Synthetic cannabinoid ajulemic acid exerts potent antifibrotic effects in experimental models of systemic sclerosis.
Cannabinoids modulate fibrogenesis in scleroderma. Ajulemic acid (AjA) is a non-psychoactive synthetic analogue of tetrahydrocannabinol that can bind the peroxisome proliferator-activated receptor-γ (PPAR-γ). Recent evidence suggests a key role for PPAR-γ in fibrogenesis.. To determine whether AjA can modulate fibrogenesis in murine models of scleroderma.. Bleomycin-induced experimental fibrosis was used to assess the antifibrotic effects of AjA in vivo. In addition, the efficacy of AjA in pre-established fibrosis was analysed in a modified model of bleomycin-induced dermal fibrosis and in mice overexpressing a constitutively active transforming growth factor β (TGFβ) receptor I. Skin fibrosis was evaluated by quantification of skin thickness and hydroxyproline content. As a marker of fibroblast activation, α-smooth muscle actin was examined. To study the direct effect of AjA in collagen neosynthesis, skin fibroblasts from patients with scleroderma were treated with increasing concentrations of AjA. Protein expression of PPAR-γ, and its endogenous ligand 15d-PGJ2, and TGFβ were assessed before and after AjA treatment.. AjA significantly prevented experimental bleomycin-induced dermal fibrosis and modestly reduced its progression when started 3 weeks into the disease. AjA strongly reduced collagen neosynthesis by scleroderma fibroblasts in vitro, an action which was reversed completely by co-treatment with a selective PPAR-γ antagonist.. AjA prevents progression of fibrosis in vivo and inhibits fibrogenesis in vitro by stimulating PPAR-γ signalling. Since therapeutic doses of AjA are well tolerated in humans, it is suggested that AjA as an interesting molecule targeting fibrosis in patients with scleroderma. Topics: Adult; Aged; Animals; Cannabinoids; Collagen; Disease Models, Animal; Dronabinol; Female; Fibroblasts; Fibrosis; Humans; Male; Mice; Middle Aged; Scleroderma, Systemic | 2012 |
Suppression of fibroblast metalloproteinases by ajulemic acid, a nonpsychoactive cannabinoid acid.
Production of matrix metalloproteinases (MMP) in joint tissue of patients with inflammatory arthritis facilitates cartilage degradation and bone erosion, and leads to joint deformities and crippling. Thus, MMPs are important targets for agents designed to treat inflammatory arthritis. Oral administration of ajulemic acid (AjA), a synthetic, nonpsychoactive cannabinoid acid, prevents joint tissue injury in rats with adjuvant arthritis. AjA binds to and activates PPARgamma directly. Therefore, we investigated the influence of AjA on MMP production in human fibroblast-like synovial cells (FLS), and examined the role of PPARgamma in the mechanism of action of AjA. FLS, treated or not with a PPARgamma antagonist, were treated with AjA then stimulated with TNFalpha or IL-1alpha. Release of MMPs-1, 3, and 9 was measured by ELISA. The influence of AjA on MMP-3 release from stimulated PPARgamma positive (PPAR+/-) and PPARgamma null (PPAR-/-) mouse embryonic fibroblasts (MEF) was also examined. Addition of AjA to FLS suppressed production of MMPs whether or not PPARgamma activation was blocked. Secretion of MMP-3 was also suppressed by AjA in both TNFalpha- and IL-1alpha-stimulated PPARgamma+/- and PPARgamma-/- MEF. Suppression of MMP secretion from FLS by AjA appears to be PPARgamma independent. Prevention by AjA of joint tissue injury and crippling in the rat adjuvant arthritis model may be explained in large part by inhibition of MMPs. These results suggest that AjA may be useful for treatment of patients with rheumatoid arthritis and osteoarthritis. Topics: Animals; Antirheumatic Agents; Arthritis, Experimental; Cartilage; Cells, Cultured; Disease Models, Animal; Dronabinol; Embryo, Mammalian; Fibroblasts; Humans; Interleukin-1alpha; Matrix Metalloproteinase Inhibitors; Matrix Metalloproteinases; Mice; Mice, Knockout; PPAR gamma; Rats; Synovial Fluid; Tumor Necrosis Factor-alpha | 2007 |
Effect of the cannabinoid ajulemic acid on rat models of neuropathic and inflammatory pain.
There is increasing evidence that cannabinoid agonists alleviate the abnormal pain sensations associated with animal models of neuropathic and inflammatory pain. However, cannabinoids produce a number of motor and psychotropic side effects. In the present study we found that systemic administration of the cannabinoid acid derivative 1',1'-dimethylheptyl-delta-8-tetrahydrocannabinol-11-oic acid (ajulemic acid, IP-751) and the non-selective cannabinoid receptor agonist HU-210 reduced mechanical allodynia in a nerve-injury induced model of neuropathic pain and in the CFA-induced model of inflammatory pain. In contrast, HU-210, but not ajulemic acid reduced motor performance in the rotarod test. These findings suggest that ajulemic acid reduces abnormal pain sensations associated with chronic pain without producing the motor side effects associated with THC and other non-selective cannabinoid receptor agonists. Topics: Analgesics; Animals; Disease Models, Animal; Dronabinol; Excitatory Amino Acid Antagonists; Inflammation; Ligation; Male; Motor Activity; Neuralgia; Rats; Rats, Sprague-Dawley; Sciatic Nerve | 2005 |
Antihyperalgesic properties of the cannabinoid CT-3 in chronic neuropathic and inflammatory pain states in the rat.
CT-3 (ajulemic acid) is a synthetic analogue of a metabolite of Delta9-tetrahydrocannabinol that has reported analgesic efficacy in neuropathic pain states in man. Here we show that CT-3 binds to human cannabinoid receptors in vitro, with high affinity at hCB1 (Ki 6 nM) and hCB2 (Ki 56 nM) receptors. In a functional GTP-gamma-S assay CT-3 was an agonist at both hCB1 and hCB2 receptors (EC50 11 and 13.4 nM, respectively). In behavioural models of chronic neuropathic and inflammatory pain in the rat, oral administration of CT-3 (0.1-1 mg/kg) produced up to 60% reversal of mechanical hyperalgesia. In both models the antihyperalgesic activity was prevented by the CB1-antagonist SR141716A but not the CB2-antagonist SR144528. In the tetrad of tests for CNS activity, CT-3 (1-10 mg/kg, po) produced dose-related catalepsy, deficits in locomotor performance, hypothermia, and acute analgesia. Comparison of 50% maximal effects in the tetrad and chronic pain assays produced an approximate therapeutic index of 5-10. Pharmacokinetic analysis showed that CT-3 exhibits significant but limited brain penetration, with a brain/plasma ratio of 0.4 measured following oral administration, compared to ratios of 1.0-1.9 measured following subcutaneous administration of WIN55,212-2 or Delta9-THC. These data show that CT-3 is a cannabinoid receptor agonist and is efficacious in animal models of chronic pain by activation of the CB1 receptor. Whilst it shows significant cannabinoid-like CNS activity, it exhibits a superior therapeutic index compared to other cannabinoid compounds, which may reflect a relatively reduced CNS penetration. Topics: Analgesics; Animals; Benzoxazines; Cannabinoids; Catalepsy; Cell Line; Chromatography; Cricetinae; Cricetulus; Cyclohexanols; Disease Models, Animal; Dose-Response Relationship, Drug; Dronabinol; Drug Interactions; Freund's Adjuvant; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Hypothermia; Inflammation; Ligation; Male; Morpholines; Motor Activity; Naphthalenes; Pain; Pain Measurement; Pain Threshold; Radioligand Assay; Rats; Rats, Wistar; Rotarod Performance Test; Sciatic Neuropathy; Sulfur Isotopes; Time Factors; Tritium | 2005 |
Pain reduction and lack of psychotropic effects with ajulemic acid: comment on the article by Sumariwalla et al.
Topics: Analgesics; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Experimental; Cannabidiol; Clinical Trials, Phase I as Topic; Cyclohexanecarboxylic Acids; Disease Models, Animal; Dronabinol; Humans; Pain; Psychotropic Drugs | 2004 |