lead-radioisotopes has been researched along with Ovarian-Neoplasms* in 7 studies
1 trial(s) available for lead-radioisotopes and Ovarian-Neoplasms
Article | Year |
---|---|
Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients.
Study distribution, pharmacokinetics, and safety of intraperitoneal (IP) 212Pb-TCMC-trastuzumab in patients with HER-2-expressing malignancy.. IP 212Pb-TCMC-trastuzumab was delivered, after 4 mg/kg intravenous (IV) trastuzumab, to 3 patients with HER-2-expressing cancer who had failed standard therapies. Patients were monitored for toxicity and pharmacokinetics/dosimetry parameters.. Imaging studies after 0.2 mCi/m2 (7.4 MBq/m2) show little redistribution out of the peritoneal cavity and no significant uptake in major organs. Peak blood level of the radiolabeled antibody, determined by decay corrected counts, was <23% injected dose at 63 hours; maximum blood radioactivity concentration was 6.3nCi/mL at 18 hours. Cumulative urinary excretion was ≤6% in 2.3 half-lives. The maximum external exposure rate immediately post-infusion at skin contact over the abdomen averaged 7.67 mR/h and dropped to 0.67 mR/h by 24 hours. The exposure rates at the other positions monitored (axilla, chest, and femur) decreased as a function of distance from the abdomen. The data points correlate closely with 212Pb physical decay (T1/2=10.6 hours). Follow-up >6 months showed no evidence of agent-related toxicity.. Pharmacokinetics and imaging after 0.2 mCi/m2 IP 212Pb-TCMC-trastuzumab in patients with HER-2-expressing malignancy showed minimal distribution outside the peritoneal cavity, ≤6% urinary excretion, and good tolerance. Topics: Aged; Aged, 80 and over; Antibodies, Monoclonal, Humanized; Cohort Studies; Female; Heterocyclic Compounds; Humans; Injections, Intraperitoneal; Isothiocyanates; Lead Radioisotopes; Middle Aged; Ovarian Neoplasms; Radionuclide Imaging; Radiopharmaceuticals; Receptor, ErbB-2; Trastuzumab | 2014 |
6 other study(ies) available for lead-radioisotopes and Ovarian-Neoplasms
Article | Year |
---|---|
Radon-220 diffusion from 224Ra-labeled calcium carbonate microparticles: Some implications for radiotherapeutic use.
Alpha-particle emitting radionuclides continue to be the subject of medical research because of their high energy and short range of action that facilitate effective cancer therapies. Radium-224 (224Ra) is one such candidate that has been considered for use in combating micrometastatic disease. In our prior studies, a suspension of 224Ra-labeled calcium carbonate (CaCO3) microparticles was designed as a local therapy for disseminated cancers in the peritoneal cavity. The progenies of 224Ra, of which radon-220 (220Rn) is the first, together contribute three of the four alpha particles in the decay chain. The proximity of the progenies to the delivery site at the time of decay of the 224Ra-CaCO3 microparticles can impact its therapeutic efficacy. In this study, we show that the diffusion of 220Rn was reduced in labeled CaCO3 suspensions as compared with cationic 224Ra solutions, both in air and liquid volumes. Furthermore, free-floating lead-212 (212Pb), which is generated from released 220Rn, had the potential to be re-adsorbed onto CaCO3 microparticles. Under conditions mimicking an in vivo environment, more than 70% of the 212Pb was adsorbed onto the CaCO3 at microparticle concentrations above 1 mg/mL. Further, the diffusion of 220Rn seemed to occur whether the microparticles were labeled by the surface adsorption of 224Ra or if the 224Ra was incorporated into the bulk of the microparticles. The therapeutic benefit of differently labeled 224Ra-CaCO3 microparticles after intraperitoneal administration was similar when examined in mice bearing intraperitoneal ovarian cancer xenografts. In conclusion, both the release of 220Rn and re-adsorption of 212Pb are features that have implications for the radiotherapeutic use of 224Ra-labeled CaCO3 microparticles. The release of 220Rn through diffusion may extend the effective range of alpha-particle dose deposition, and the re-adsorption of the longer lived 212Pb onto the CaCO3 microparticles may enhance the retention of this nuclide in the peritoneal cavity. Topics: Animals; Apoptosis; Calcium Carbonate; Cell Proliferation; Female; Humans; Lead Radioisotopes; Mice; Mice, Nude; Ovarian Neoplasms; Radon; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2021 |
Safety and Outcome Measures of First-in-Human Intraperitoneal α Radioimmunotherapy With 212Pb-TCMC-Trastuzumab.
One-year monitoring of patients receiving intraperitoneal (IP) Pb-TCMC-trastuzumab to provide long-term safety and outcome data. A secondary objective was to study 7 tumor markers for correlation with outcome.. Eighteen patients with relapsed intra-abdominal human epidermal growth factor receptor-2 expressing peritoneal metastases were treated with a single IP infusion of Pb-TCMC-trastuzumab, delivered <4 h after 4 mg/kg IV trastuzumab. Seven tumor markers were studied for correlation with outcome.. Six dose levels (7.4, 9.6, 12.6, 16.3, 21.1, 27.4 MBq/m) were well tolerated with early possibly agent-related adverse events being mild, transient, and not dose dependent. These included asymptomatic, abnormal laboratory values. No late renal, liver, cardiac, or other toxicity was noted up to 1 year. There were no clinical signs or symptoms of an immune response to Pb-TCMC-trastuzumab, and assays to detect an immune response to this conjugate were negative for all tested. Tumor marker studies in ovarian cancer patients showed a trend of decreasing Cancer antigen 72-4 (CA 72-4) aka tumor-associated glycoprotein 72 (TAG-72) and tumor growth with increasing administered radioactivity. Other tumor markers, including carbohydrate antigen (CA125), human epididymis protein 4 (HE-4), serum amyloid A (SAA), mesothelin, interleukin-6 (IL-6), and carcinoembryonic antigen (CEA) did not correlate with imaging outcome.. IP Pb-TCMC-trastuzumab up to 27 MBq/m seems safe for patients with peritoneal carcinomatosis who have failed standard therapies. Serum TAG-72 levels better correlated to imaging changes in ovarian cancer patients than the more common tumor marker, CA125. Topics: Aged; Aged, 80 and over; Antineoplastic Agents, Immunological; Female; Follow-Up Studies; Humans; Isothiocyanates; Lead Radioisotopes; Middle Aged; Neoplasm Recurrence, Local; Outcome Assessment, Health Care; Ovarian Neoplasms; Peritoneal Neoplasms; Prognosis; Radioimmunotherapy; Survival Rate; Trastuzumab | 2018 |
Radioimmunotherapy targeting of HER2/neu oncoprotein on ovarian tumor using lead-212-DOTA-AE1.
The specificity, toxicity and efficacy of lead (212Pb) radioimmunotherapy were evaluated in nude mice bearing the SK-OV-3 human ovarian tumor cell line expressing the HER2/neu proto-oncogene.. The therapeutic agent used was the tumor-specific anti-HER2/neu monoclonal antibody AE1 conjugated to 212Pb, 212Bi being the daughter and thus the source of the alpha-particle and beta emissions. A bifunctional derivative of tetraazacyclododecanetetraacetic acid (p-SCN-Bz-DOTA) was used to couple 212Pb to the anti-HER2/neu monoclonal antibody AE1. The chelating agent did not alter the binding affinity to its antigenic target or the pharmacokinetics and tissue distribution of the AE1 antibody. Toxicity and therapeutic efficacy of 212Pb-AE1 were evaluated in nude mouse ascites or solid tumor models, wherein SK-OV-3 cells were administered i.p. or s.c., respectively.. The dose-limiting acute toxicity after i.v. administration of 212Pb-AE1 was bone marrow suppression, which was observed at doses above 25 microCi. Therefore, doses of 10 and 20 microCi were used in efficacy trials. The i.p. administration of 212Pb-AE1 3 days after i.p. tumor inoculation led to a significant (P2 = 0.015) prolongation of tumor-free survival. In a second model, i.v. treatment with 212Pb-AE1 3 days after s.c. tumor inoculation prevented subsequent tumor development in all animals treated with 10 or 20 microCi of 212Pb-AE1 (P2 = 0.002 compared to control groups). This efficacy in the adjuvant setting was antibody specific because treatments with equivalently labeled control antibody or unlabeled AE1 antibody or no treatment were less effective. The rate of growth of small (mean tumor volume, 15 mm3) SK-OV-3 tumors was modestly inhibited. However, tumor growth was not inhibited in mice bearing larger (mean tumor volume, 146 mm3) SK-OV-3 tumors by the administration of a single dose of 10 or 20 microCi of 212Pb-AE1.. Lead-212-AE1 as an intact radiolabeled monoclonal antibody may be of only modest value in the therapy of bulky solid tumors due to the short physical half-life of 212Pb and time required to achieve a useful tumor-to-normal tissue ratio of radionuclide after administration. However, the radiolabeled monoclonal antibody may be useful in therapy of tumors in the adjuvant setting. Furthermore, 212Pb may be of value in select situations, including treatment of leukemia, intercavitary therapy or strategies that target vascular endothelial cells of tumors. Topics: Animals; Antibodies, Monoclonal; Female; Humans; Lead Radioisotopes; Mice; Mice, Nude; Neoplasm Transplantation; Ovarian Neoplasms; Proto-Oncogene Mas; Radioimmunotherapy; Receptor, ErbB-2; Tissue Distribution | 1997 |
Comparison of short-lived high-LET alpha-emitting radionuclides lead-212 and bismuth-212 to low-LET X-rays on ovarian carcinoma.
We are investigating the potential use of short-lived alpha-emitting radionuclides for the treatment of ovarian carcinoma. These radionuclides transfer dense high ionizing linear energy (high LET) over a short path length without dependence upon cellular oxygen. The alpha-emitting radionuclides chosen were lead-212 and bismuth-212 which are readily available. The radiosensitivities of two ovarian carcinoma cell lines (OVC-1 and OVC-2) was greater with 212Pb and 212Bi than with X-ray therapy. D0, inversely related to the radiosensitivity, was 155 and 240 rads for OVC-1 and OVC-2, respectively. With 212Pb or 212Bi, the slope of the survival curves was steeper. The D0 was 75 and 70 rads after 212Pb and 85 and 95 rads after 212Bi treatment for OVC-1 and OVC-2, respectively. The relative biological effectiveness with alpha irradiation was two to four times greater than with X rays. Unlike low-LET irradiation (i.e., X rays and gamma emitters) the cells had no ability to accumulate or repair sublethal damage. From these experiments it is concluded that a greater therapeutic advantage may be gained with alpha-emitting radionuclides than X rays. Further development of these nuclides may provide for a new form of therapy. Topics: Bismuth; Carcinoma; Cell Line; Cell Survival; Energy Transfer; Female; Humans; Lead Radioisotopes; Ovarian Neoplasms; Radioisotope Teletherapy; Radioisotopes; Tumor Cells, Cultured | 1989 |
The development of alpha-emitting radionuclide lead 212 for the potential treatment of ovarian carcinoma.
alpha-Emitting radionuclides may be an effective alternative treatment against ovarian carcinoma because they have short half-lives and are densely ionizing, with high linear energy transfer to a depth of several cell diameters without requiring cellular oxygenation. One radionuclide that has been generated and tested in our laboratory in vitro and in vivo is lead 212 (212Pb). Intraperitoneal instillation of 212Pb prolonged survival and totally eradicated tumor in 24% of mice inoculated with the extremely virulent Ehrlich ascites-producing tumor. In vitro 212Pb was two to four times more effective in killing human ovarian cancer cells than x-rays. Irradiation with 212Pb increased the radiosensitivity and chromosomal aberrations of cells. In dogs, intraperitoneal instillation of 2.6 mCi of ferrous hydroxide tagged with 212Pb caused no significant toxicity. It appears that alpha-emitting radionucides such as 212Pb have the potential to be a new and potent treatment of ovarian carcinoma and could be effective in cases that are resistant to conventional chemotherapy or x-ray therapy. Topics: Animals; Carcinoma, Ehrlich Tumor; Cell Line; Female; Humans; Injections, Intraperitoneal; Lead Radioisotopes; Mice; Ovarian Neoplasms | 1989 |
The effect of the alpha-emitting radionuclide lead-212 on human ovarian carcinoma: a potential new form of therapy.
To improve response and survival of patients with ovarian carcinoma noncross-resistant forms of therapy must be developed. alpha-emitting radionuclides may be therapeutically useful since they can directly ionize with energies of 5 to 9 MeV, penetrate only a few cell diameters, and transfer a high amount of energy. The purpose of this study was to determine the effect of the alpha-emitter, lead-212 (212Pb), complexed to sulfur in a nude athymic mouse model (NIH:OVCAR-3) containing human ascites and solid epithelial ovarian carcinoma. Thirty-six nude mice 28 to 32 days old were injected with 10(7) to 10(8) carcinoma cells from donor mice. After 4 weeks, six groups of six nu/nu athymic BALB-C mice were intraperitoneally injected with 70, 50, 20, 5 microCi of 212Pb sulfur colloid, sulfur colloid, or saline. Tumor necrosis with a decrease in ascites and a dose-related survival were noted with doses of 50, 20, and 5 microCi. With 70 microCi acute gastrointestinal toxicity developed. These experiments form the basis for further investigations and the development of alpha-emitting radiocolloids which may be of therapeutic efficacy in the treatment of intraperitoneal ovarian carcinoma. Topics: Animals; Female; Humans; Lead Radioisotopes; Mice; Mice, Inbred BALB C; Ovarian Neoplasms; Rats; Rats, Inbred Strains | 1989 |