lead-radioisotopes and Disease-Models--Animal

lead-radioisotopes has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for lead-radioisotopes and Disease-Models--Animal

ArticleYear
In situ Generated
    Current radiopharmaceuticals, 2020, Volume: 13, Issue:2

    New treatments combating bone and extraskeletal metastases are needed for patients with metastatic castration-resistant prostate cancer. The majority of metastases overexpress prostate-specific membrane antigen (PSMA), making it an ideal candidate for targeted radionuclide therapy.. The aim of this study was to test a novel liquid 224Ra/212Pb-generator for the rapid preparation of a dual-alpha targeting solution. Here, PSMA-targeting ligands are labelled with 212Pb in the 224Ra-solution in transient equilibrium with daughter nuclides. Thus, natural bone-seeking 224Ra targeting sclerotic bone metastases and 212Pb-chelated PSMA ligands targeting PSMA-expressing tumour cells are obtained.. Two PSMA-targeting ligands, the p-SCN-Bn-TCMC-PSMA ligand (NG001), specifically developed for chelating 212Pb, and the most clinically used DOTA-based PSMA-617 were labelled with 212Pb. Radiolabelling and targeting potential were investigated in situ, in vitro (PSMA-positive C4-2 human prostate cancer cells) and in vivo (athymic mice bearing C4-2 xenografts).. NG001 was rapidly labelled with 212Pb (radiochemical purity >94% at concentrations of ≥15 μg/ml) using the liquid 224Ra/212Pb-generator. The high radiochemical purity and stability of [212Pb]Pb- NG001 were demonstrated over 48 hours in the presence of ascorbic acid and albumin. Similar binding abilities of the 212Pb-labelled ligands were observed in C4-2 cells. The PSMA ligands displayed comparable tumour uptake after 2 hours, but NG001 showed a 3.5-fold lower kidney uptake than PSMA- 617. Radium-224 was not chelated and, hence, showed high uptake in bones.. A fast method for the labelling of PSMA ligands with 212Pb in the 224Ra/212Pb-solution was developed. Thus, further in vivo studies with dual tumour targeting by alpha-particles are warranted.

    Topics: Animals; Bone Neoplasms; Cell Line, Tumor; Disease Models, Animal; Humans; Lead Radioisotopes; Ligands; Male; Mice; Mice, Nude; Prostate-Specific Antigen; Prostatic Neoplasms; Radiopharmaceuticals; Radium; Thorium

2020
    International journal of molecular sciences, 2018, Mar-21, Volume: 19, Issue:4

    Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a poor prognosis. There is a clinical need for effective, targeted therapy strategies that destroy both differentiated TNBC cells and TNBC cancer initiating cells (CICs), as the latter are implicated in the metastasis and recurrence of TNBC. Chondroitin sulfate proteoglycan 4 (CSPG4) is overexpressed on differentiated tumor cells and CICs obtained from TNBC patient specimens, suggesting that CSPG4 may be a clinically relevant target for the imaging and therapy of TNBC. The purpose of this study was to determine whether α-particle radioimmunotherapy (RIT) targeting TNBC cells using the CSPG4-specific monoclonal antibody (mAb) 225.28 as a carrier was effective at eliminating TNBC tumors in preclinical models. To this end, mAb 225.28 labeled with

    Topics: Animals; Antibodies; Antigens; Cell Differentiation; Cell Line, Tumor; Cell Proliferation; Cell Survival; Clone Cells; Disease Models, Animal; Female; Humans; Lead Radioisotopes; Mice, Nude; Neoplastic Stem Cells; Proteoglycans; Tissue Distribution; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays

2018