ldn-193189 has been researched along with Hypertrophy* in 2 studies
2 other study(ies) available for ldn-193189 and Hypertrophy
Article | Year |
---|---|
Inhibition of BMP signaling with LDN 193189 can influence bone marrow stromal cell fate but does not prevent hypertrophy during chondrogenesis.
Bone morphogenetic protein (BMP) cascades are upregulated during bone marrow-derived stromal cell (BMSC) chondrogenesis, contributing to hypertrophy and preventing effective BMSC-mediated cartilage repair. Previous work demonstrated that a proprietary BMP inhibitor prevented BMSC hypertrophy, yielding stable cartilage tissue. Because of the significant therapeutic potential of a molecule capable of hypertrophy blockade, we evaluated the capacity of a commercially available BMP type I receptor inhibitor with similar properties, LDN 193189, to prevent BMSC hypertrophy. Using 14-day microtissue chondrogenic induction cultures we found that LDN 193189 permitted BMSC chondrogenesis but did not prevent hypertrophy. LDN 193189 was sufficiently potent to counter mineralization and adipogenesis in response to exogenous BMP-2 in osteogenic induction cultures. LDN 193189 did not modify BMSC behavior in adipogenic induction cultures. Although LDN 193189 is effective in countering BMP signaling in a manner that influences BMSC fate, this blockade is insufficient to prevent hypertrophy. Topics: Bone Marrow Cells; Bone Morphogenetic Proteins; Cell Differentiation; Chondrogenesis; Humans; Hypertrophy; Mesenchymal Stem Cells; Osteogenesis; Pyrazoles; Pyrimidines | 2022 |
Heparan sulfate deficiency leads to hypertrophic chondrocytes by increasing bone morphogenetic protein signaling.
Exostosin-1 (EXT1) and EXT2 are the major genetic etiologies of multiple hereditary exostoses and are essential for heparan sulfate (HS) biosynthesis. Previous studies investigating HS in several mouse models of multiple hereditary exostoses have reported that aberrant bone morphogenetic protein (BMP) signaling promotes osteochondroma formation in Ext1-deficient mice. This study examined the mechanism underlying the effects of HS deficiency on BMP/Smad signaling in articular cartilage in a cartilage-specific Ext. We generated mice with a conditional Ext1 knockout in cartilage tissue (Ext1-cKO mice) using Prg4-Cre transgenic mice. Structural cartilage alterations were histologically evaluated and phospho-Smad1/5/9 (pSmad1/5/9) expression in mouse chondrocytes was analyzed. The effect of pharmacological intervention of BMP signaling using a specific inhibitor was assessed in the articular cartilage of Ext1-cKO mice.. Hypertrophic chondrocytes were significantly more abundant (P = 0.021) and cartilage thickness was greater in Ext1-cKO mice at 3 months postnatal than in control littermates (P = 0.036 for femur; and P < 0.001 for tibia). However, osteoarthritis did not spontaneously occur before the 1-year follow-up. matrix metalloproteinase (MMP)-13 and adamalysin-like metalloproteinases with thrombospondin motifs(ADAMTS)-5 were upregulated in hypertrophic chondrocytes of transgenic mice. Immunostaining and western blotting revealed that pSmad1/5/9-positive chondrocytes were more abundant in the articular cartilage of Ext1-cKO mice than in control littermates. Furthermore, the BMP inhibitor significantly decreased the number of hypertrophic chondrocytes in Ext1-cKO mice (P = 0.007).. HS deficiency in articular chondrocytes causes chondrocyte hypertrophy, wherein upregulated BMP/Smad signaling partially contributes to this phenotype. HS might play an important role in maintaining the cartilaginous matrix by regulating BMP signaling. Topics: ADAMTS5 Protein; Animals; Bone Morphogenetic Proteins; Cartilage, Articular; Chondrocytes; Disease Models, Animal; Heparitin Sulfate; Hypertrophy; Matrix Metalloproteinase 13; Mice; Mice, Knockout; Mice, Transgenic; N-Acetylglucosaminyltransferases; Osteoarthritis, Knee; Pyrazoles; Pyrimidines; Smad1 Protein; Smad5 Protein; Smad8 Protein | 2020 |