latrunculin-b and Arrhythmias--Cardiac

latrunculin-b has been researched along with Arrhythmias--Cardiac* in 2 studies

Other Studies

2 other study(ies) available for latrunculin-b and Arrhythmias--Cardiac

ArticleYear
Latrunculin B modulates electrophysiological characteristics and arrhythmogenesis in pulmonary vein cardiomyocytes.
    Clinical science (London, England : 1979), 2016, Volume: 130, Issue:9

    AF (atrial fibrillation) is the most common sustained arrhythmia, and the PVs (pulmonary veins) play a critical role in triggering AF. Stretch causes structural remodelling, including cytoskeleton rearrangement, which may play a role in the genesis of AF. Lat-B (latrunculin B), an inhibitor of actin polymerization, is involved in Ca(2+) regulation. However, it is unclear whether Lat-B directly modulates the electrophysiological characteristics and Ca(2+) homoeostasis of the PVs. Conventional microelectrodes, whole-cell patch-clamp, and the fluo-3 fluorimetric ratio technique were used to record ionic currents and intracellular Ca(2+) within isolated rabbit PV preparations, or within isolated single PV cardiomyocytes, before and after administration of Lat-B (100 nM). Langendorff-perfused rabbit hearts were exposed to acute and continuous atrial stretch, and we studied PV electrical activity. Lat-B (100 nM) decreased the spontaneous electrical activity by 16±4% in PV preparations. Lat-B (100 nM) decreased the late Na(+) current, L-type Ca(2+) current, Na(+)/Ca(2+) exchanger current, and stretch-activated BKCa current, but did not affect the Na(+) current in PV cardiomyocytes. Lat-B reduced the transient outward K(+) current and ultra-rapid delayed rectifier K(+) current, but increased the delayed rectifier K(+) current in isolated PV cardiomyocytes. In addition, Lat-B (100 nM) decreased intracellular Ca(2+) transient and sarcoplasmic reticulum Ca(2+) content in PV cardiomyocytes. Moreover, Lat-B attenuated stretch-induced increased spontaneous electrical activity and trigger activity. The effects of Lat-B on the PV spontaneous electrical activity were attenuated in the presence of Y-27632 [10 μM, a ROCK (Rho-associated kinase) inhibitor] and cytochalasin D (10 μM, an actin polymerization inhibitor). In conclusion, Lat-B regulates PV electrophysiological characteristics and attenuates stretch-induced arrhythmogenesis.

    Topics: Amides; Animals; Arrhythmias, Cardiac; Atrial Fibrillation; Bridged Bicyclo Compounds, Heterocyclic; Calcium Signaling; Cytochalasin D; Electrophysiological Phenomena; Heart Atria; In Vitro Techniques; Male; Myocytes, Cardiac; Perfusion; Pulmonary Veins; Pyridines; Rabbits; Sarcoplasmic Reticulum; Sodium-Calcium Exchanger; Thiazolidines

2016
Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of α-smooth muscle actin containing stress fibers.
    Circulation research, 2011, Oct-28, Volume: 109, Issue:10

    Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether α-smooth muscle actin (α-SMA) containing stress fibers, the cytoskeletal components that set myofibroblasts apart from resident fibroblasts, are essential for myofibroblasts to develop arrhythmogenic interactions with cardiomyocytes.. We investigated whether pharmacological ablation of α-SMA containing stress fibers by actin-targeting drugs affects arrhythmogenic myofibroblast-cardiomyocyte cross-talk.. Experiments were performed with patterned growth cell cultures of neonatal rat ventricular cardiomyocytes coated with cardiac myofibroblasts. The preparations exhibited slow conduction and ectopic activity under control conditions. Exposure to actin-targeting drugs (Cytochalasin D, Latrunculin B, Jasplakinolide) for 24 hours led to disruption of α-SMA containing stress fibers. In parallel, conduction velocities increased dose-dependently to values indistinguishable from cardiomyocyte-only preparations and ectopic activity measured continuously over 24 hours was completely suppressed. Mechanistically, antiarrhythmic effects were due to myofibroblast hyperpolarization (Cytochalasin D, Latrunculin B) and disruption of heterocellular gap junctional coupling (Jasplakinolide), which caused normalization of membrane polarization of adjacent cardiomyocytes.. The results suggest that α-SMA containing stress fibers importantly contribute to myofibroblast arrhythmogeneicity. After ablation of this cytoskeletal component, cells lose their arrhythmic effects on cardiomyocytes, even if heterocellular electrotonic coupling is sustained. The findings identify α-SMA containing stress fibers as a potential future target of antiarrhythmic therapy in hearts undergoing structural remodeling.

    Topics: Actins; Action Potentials; Animals; Animals, Newborn; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Bridged Bicyclo Compounds, Heterocyclic; Cell Communication; Cell Shape; Cells, Cultured; Coculture Techniques; Cytochalasin D; Depsipeptides; Dose-Response Relationship, Drug; Gap Junctions; Myocytes, Cardiac; Myofibroblasts; Phenotype; Rats; Rats, Wistar; Stress Fibers; Thiazolidines; Time Factors

2011