lassbio-579 has been researched along with Schizophrenia* in 4 studies
4 other study(ies) available for lassbio-579 and Schizophrenia
Article | Year |
---|---|
LASSBio-579, a prototype antipsychotic drug, and clozapine are effective in novel object recognition task, a recognition memory model.
Previous studies on the N-phenylpiperazine derivative LASSBio-579 have suggested that LASSBio-579 has an atypical antipsychotic profile. It binds to D2, D4 and 5-HT1A receptors and is effective in animal models of schizophrenia symptoms (prepulse inhibition disruption, apomorphine-induced climbing and amphetamine-induced stereotypy). In the current study, we evaluated the effect of LASSBio-579, clozapine (atypical antipsychotic) and haloperidol (typical antipsychotic) in the novel object recognition task, a recognition memory model with translational value. Haloperidol (0.01 mg/kg, orally) impaired the ability of the animals (CF1 mice) to recognize the novel object on short-term and long-term memory tasks, whereas LASSBio-579 (5 mg/kg, orally) and clozapine (1 mg/kg, orally) did not. In another set of experiments, animals previously treated with ketamine (10 mg/kg, intraperitoneally) or vehicle (saline 1 ml/100 g, intraperitoneally) received LASSBio-579, clozapine or haloperidol at different time-points: 1 h before training (encoding/consolidation); immediately after training (consolidation); or 1 h before long-term memory testing (retrieval). LASSBio-579 and clozapine protected against the long-term memory impairment induced by ketamine when administered at the stages of encoding, consolidation and retrieval of memory. These findings point to the potential of LASSBio-579 for treating cognitive symptoms of schizophrenia and other disorders. Topics: Animals; Antipsychotic Agents; Clozapine; Disease Models, Animal; Haloperidol; Ketamine; Male; Memory, Long-Term; Memory, Short-Term; Mice; Piperazines; Recognition, Psychology; Schizophrenia; Time Factors | 2016 |
Synthesis and pharmacological evaluation of new N-phenylpiperazine derivatives designed as homologues of the antipsychotic lead compound LASSBio-579.
In an attempt to increase the affinity of our antipsychotic lead compound LASSBio-579 (1-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)-4-phenylpiperazine; (2)) for the 5-HT(2A) receptor, we synthesized five new N-phenylpiperazine derivatives using a linear synthetic route and the homologation strategy. The binding profile of these compounds was evaluated for a series of dopaminergic, serotonergic and alpha-adrenergic receptors relevant for schizophrenia, using classical competition assays. Increasing the length of the spacer between the functional groups of (2) proved to be appropriated since the affinity of these compounds increased 3-10-fold for the 5-HT(2A) receptor, with no relevant change in the affinity for the D₂-like and 5-HT(1A) receptors. A GTP-shift assay also indicated that the most promising derivative (1-(4-(1-(4-chlorophenyl)-1H-pyrazol-4-yl) butyl)-4-phenylpiperazine) (LASSBio-1635) (6) has the expected efficacy at the 5-HT(2A) receptors, acting as an antagonist. Intraperitoneal administration of (6) prevented apomorphine-induced climbing behavior and ketamine-induced hyperlocomotion in mice, in a dose dependent manner. Together, these results show that (6) could be considered as a new antipsychotic lead compound. Topics: Animals; Antipsychotic Agents; Behavior, Animal; Chemistry Techniques, Synthetic; Dose-Response Relationship, Drug; Drug Design; Locomotion; Male; Mice; Piperazines; Receptor, Serotonin, 5-HT2A; Schizophrenia | 2013 |
New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia.
Previous behavioral and receptor binding studies on N-phenylpiperazine derivatives by our group indicated that LASSBio-579, LASSBio-580 and LASSBio-581 could be potential antipsychotic lead compounds. The present study identified LASSBio-579 as the most promising among the three compounds, since it was the only one that inhibited apomorphine-induced climbing (5 mg/kg p.o.) and apomorphine-induced hypothermia (15 mg/kg p.o.). Furthermore, LASSBio-579 (0.5 mg/kg p.o.) was effective in the ketamine-induced hyperlocomotion test and prevented the prepulse inhibition deficits induced by apomorphine, DOI and ketamine with different potencies (1 mg/kg, 0.5 mg/kg and 5 mg/kg p.o., respectively). LASSBio-579 also induced a motor impairment, catalepsy and a mild sedative effect but only at doses 3-120 times higher than those with antipsychotic-like effects. In addition, LASSBio-579 (0.5 and 1 mg/kg p.o.) reversed the catalepsy induced by WAY 100,635, corroborating its action on both dopaminergic and serotonergic neurotransmission and pointing to the contribution of 5-HT(1A) receptor activation to its pharmacological profile. Moreover, co-administration of sub-effective doses of LASSBio-579 with sub-effective doses of clozapine or haloperidol prevented the apomorphine-induced climbing without induction of catalepsy. In summary, our results characterize LASSBio-579 as a multi-target ligand active in pharmacological animal models of schizophrenia, confirming that this compound could be included in development programs aiming at a new drug for treating schizophrenia. Topics: Acoustic Stimulation; Analysis of Variance; Animals; Antipsychotic Agents; Apomorphine; Barbiturates; Catalepsy; Disease Models, Animal; Dopamine Agonists; Dose-Response Relationship, Drug; Drug Interactions; Hypothermia; Ketamine; Male; Mice; Motor Activity; Piperazines; Psychoacoustics; Reflex, Startle; Schizophrenia; Sleep | 2013 |
Searching for multi-target antipsychotics: Discovery of orally active heterocyclic N-phenylpiperazine ligands of D2-like and 5-HT1A receptors.
We described herein the design, synthesis, and pharmacological evaluation of N-phenylpiperazine heterocyclic derivatives as multi-target compounds potentially useful for the treatment of schizophrenia. The isosteric replacement of the heterocyclic ring at the biaryl motif generating pyrazole, 1,2,3-triazole, and 2-methylimidazole[1,2-a]pyridine derivatives resulted in 21 analogues with different substitutions at the para-biaryl and para-phenylpiperazine positions. Among the compounds prepared, 4 (LASSBio-579) and 10 (LASSBio-664) exhibited an adequate binding profile and a potential for schizophrenia positive symptoms treatment without cataleptogenic effects. Structural features of this molecular scaffold are discussed regarding binding affinity and selectivity for D(2)-like, 5-HT(1A), and 5-HT(2A) receptors. Topics: Administration, Oral; Animals; Antipsychotic Agents; Cell Line; Humans; Ligands; Male; Mice; Piperazines; Pyrazoles; Rats; Receptor, Serotonin, 5-HT1A; Receptors, Dopamine D2; Schizophrenia | 2010 |