lassbio-579 and Hypothermia

lassbio-579 has been researched along with Hypothermia* in 2 studies

Other Studies

2 other study(ies) available for lassbio-579 and Hypothermia

ArticleYear
New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia.
    Behavioural brain research, 2013, Jan-15, Volume: 237

    Previous behavioral and receptor binding studies on N-phenylpiperazine derivatives by our group indicated that LASSBio-579, LASSBio-580 and LASSBio-581 could be potential antipsychotic lead compounds. The present study identified LASSBio-579 as the most promising among the three compounds, since it was the only one that inhibited apomorphine-induced climbing (5 mg/kg p.o.) and apomorphine-induced hypothermia (15 mg/kg p.o.). Furthermore, LASSBio-579 (0.5 mg/kg p.o.) was effective in the ketamine-induced hyperlocomotion test and prevented the prepulse inhibition deficits induced by apomorphine, DOI and ketamine with different potencies (1 mg/kg, 0.5 mg/kg and 5 mg/kg p.o., respectively). LASSBio-579 also induced a motor impairment, catalepsy and a mild sedative effect but only at doses 3-120 times higher than those with antipsychotic-like effects. In addition, LASSBio-579 (0.5 and 1 mg/kg p.o.) reversed the catalepsy induced by WAY 100,635, corroborating its action on both dopaminergic and serotonergic neurotransmission and pointing to the contribution of 5-HT(1A) receptor activation to its pharmacological profile. Moreover, co-administration of sub-effective doses of LASSBio-579 with sub-effective doses of clozapine or haloperidol prevented the apomorphine-induced climbing without induction of catalepsy. In summary, our results characterize LASSBio-579 as a multi-target ligand active in pharmacological animal models of schizophrenia, confirming that this compound could be included in development programs aiming at a new drug for treating schizophrenia.

    Topics: Acoustic Stimulation; Analysis of Variance; Animals; Antipsychotic Agents; Apomorphine; Barbiturates; Catalepsy; Disease Models, Animal; Dopamine Agonists; Dose-Response Relationship, Drug; Drug Interactions; Hypothermia; Ketamine; Male; Mice; Motor Activity; Piperazines; Psychoacoustics; Reflex, Startle; Schizophrenia; Sleep

2013
Serotonergic neurotransmission mediates hypothermia induced by the N-phenylpiperazine antipsychotic prototypes LASSBio-579 and LASSBio-581.
    Pharmacology, biochemistry, and behavior, 2008, Volume: 89, Issue:1

    Previous studies have demonstrated that LASSBio-579 and LASSBio-581, two N-phenylpiperazine derivatives designed for the treatment of schizophrenia, are presynaptic dopamine D(2) receptor agonists that induce a hypothermic effect in mice that is not mediated by dopamine receptor activation. The aim of the present study was to investigate possible serotonergic mechanisms underlying hypothermia induced by LASSBio-579 and LASSBio-581 in CF1 mice. The reduction in core temperature was dose-dependent (15-60 mg/kg, i.p.) and occurred by the oral route (30 mg/kg). Pretreatment with haloperidol (4 mg/kg, i.p.) resulted in a synergistic hypothermic effect. Pretreatment with (+/-)DOI (0.25 mg/kg, i.p.), a serotonin 5-HT(2A/C) receptor agonist, reduced the hypothermic effect induced by LASSBio-579 and LASSBio-581 at 15 and 30 mg/kg, i.p. In contrast, (+/-)DOI enhanced the hypothermia induced by both compounds at 60 mg/kg, i.p. The serotonin 5-HT1A antagonist WAY 100635 (0.05 mg/kg, s.c.) abolished the hypothermia induced by LASSBio-579 and diminished the hypothermia induced by LASSBio-581. Pretreatment with LASSBio579 (30 and 60 mg/kg, i.p.) and LASSBio-581 (60 mg/kg, i.p.) reduced the number of head-twitches induced by (+/-)DOI (2.5 mg/kg, i.p.). The ear-scratch response induced by (+/-)DOI was inhibited by both LASSBio-579 and LASSBio-581 at 60 mg/kg, i.p. These results indicate that LASSBio-579 and LASSBio-581 have mechanisms of action through the serotonergic neurotransmitter system.

    Topics: Animals; Antipsychotic Agents; Behavior, Animal; Body Temperature; Haloperidol; Hypothermia; Injections, Intraperitoneal; Male; Mice; Piperazines; Pyridines; Serotonin; Serotonin Antagonists; Synaptic Transmission

2008