laq824 has been researched along with Prostatic-Neoplasms* in 2 studies
2 other study(ies) available for laq824 and Prostatic-Neoplasms
Article | Year |
---|---|
Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats.
The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS. The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS. SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M-1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29-35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h)and 211-fold improvement in the AUC∞ (105.7 µg·h/ml) compared to free LAQ (0.79 h, 0.5 µg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS. We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in vivo pharmacokinetic properties. Topics: Animals; Antineoplastic Agents; Area Under Curve; Cell Line, Tumor; Drug Liberation; Female; Half-Life; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Iron; Liposomes; Male; Particle Size; Phagocytes; Polyethylene Glycols; Prostatic Neoplasms; Rats; Rats, Sprague-Dawley; Solubility; Vorinostat | 2014 |
Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824.
Androgen receptor plays a critical role in the development of primary as well as advanced hormone-refractory prostate cancer. Therefore, ablation of androgen receptor from prostate cancer cells is an interesting concept for developing a new therapy not only for androgen-dependent prostate cancer but also for metastatic hormone-refractory prostate cancer, for which there is no effective treatment available. We report here that LAQ824, a cinnamyl hydroxamatic acid histone deacetylase inhibitor currently in human clinical trials, effectively depleted androgen receptor in prostate cancer cells at nanomolar concentrations. LAQ824 seemed capable of depleting both the mutant and wild-type androgen receptors in either androgen-dependent and androgen-independent prostate cancer cells. Although LAQ824 may exert its effect through multiple mechanisms, several lines of evidence suggest that inactivation of the heat shock protein-90 (Hsp90) molecular chaperone is involved in LAQ824-induced androgen receptor depletion. Besides androgen receptor, LAQ824 reduced the level of Hsp90 client proteins HER-2 (ErbB2), Akt/PKB, and Raf-1 in LNCaP cells. Another Hsp90 inhibitor, 17-allyamino-17-demethoxygeldanamycin (17-AAG), also induced androgen receptor diminution. LAQ824 induced Hsp90 acetylation in LNCaP cells, which resulted in inhibition of its ATP-binding activity, dissociation of Hsp90-androgen receptor complex, and proteasome-mediated degradation of androgen receptor. Consequently, LAQ824 blocked androgen-induced prostate-specific antigen production in LNCaP cells. LAQ824 effectively inhibited cell proliferation and induced apoptosis of these prostate cancer cells. These results reveal that LAQ824 is a potent agent for depletion of androgen receptor and a potential new drug for prostate cancer. Topics: Acetylation; Androgens; Apoptosis; Benzoquinones; Blotting, Western; Cell Proliferation; Enzyme Inhibitors; Histone Deacetylase Inhibitors; HSP90 Heat-Shock Proteins; Humans; Hydroxamic Acids; Immunoprecipitation; Lactams, Macrocyclic; Male; Neoplasms, Hormone-Dependent; Prostate-Specific Antigen; Prostatic Neoplasms; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-raf; Receptor, ErbB-2; Receptors, Androgen; Rifabutin; Tumor Cells, Cultured | 2005 |