laq824 and Breast-Neoplasms

laq824 has been researched along with Breast-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for laq824 and Breast-Neoplasms

ArticleYear
Rapid alteration of microRNA levels by histone deacetylase inhibition.
    Cancer research, 2006, Feb-01, Volume: 66, Issue:3

    Improved understanding of the molecular mechanisms by which small-molecule inhibitors of histone deacetylases (HDAC) induce programs, such as cellular differentiation and apoptosis, would undoubtedly assist their clinical development as anticancer agents. As modulators of gene transcript levels, HDAC inhibitors (HDACi) typically affect only 5% to 10% of actively transcribed genes with approximately as many mRNA transcripts being up-regulated as down-regulated. Using microRNA (miRNA) array analysis, we report rapid alteration of miRNA levels in response to the potent hydroxamic acid HDACi LAQ824 in the breast cancer cell line SKBr3. Within 5 hours of exposure to a proapoptotic dose of LAQ824, significant changes were measured in 40% of the >60 different miRNA species expressed in SKBr3 cells with 22 miRNA species down-regulated and 5 miRNAs up-regulated. To explore a potential functional link between HDACi induced mRNA up-regulation and miRNA down-regulation, antisense experiments were done against miR-27a and miR-27b, both abundantly expressed and down-regulated in SKBr3 cells by LAQ824. Correlating a set of genes previously determined by cDNA array analysis to be rapidly up-regulated by LAQ824 in SKBr3 with a database of potential 3' untranslated region miRNA binding elements, two genes containing putative miR-27 anchor elements were identified as transcriptionally up-regulated following miR-27 antisense transfection, ZBTB10/RINZF, a Sp1 repressor, and RYBP/DEDAF, an apoptotic facilitator. These findings emphasize the importance of post-transcriptional mRNA regulation by HDACi in addition to their established effects on promoter-driven gene expression.

    Topics: Breast Neoplasms; Cell Line, Tumor; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; MicroRNAs; RNA, Antisense; RNA, Messenger; Transfection

2006
Effect of histone deacetylase inhibitor LAQ824 on antineoplastic action of 5-Aza-2'-deoxycytidine (decitabine) on human breast carcinoma cells.
    Cancer chemotherapy and pharmacology, 2006, Volume: 58, Issue:5

    Epigenetic silencing of tumor suppressor genes (TSGs) by aberrant DNA methylation and chromatin deacetylation provides interesting targets for chemotherapeutic intervention by inhibitors of these events. 5-Aza-2'-deoxycytidine (decitabine, 5AZA-CdR) is a potent demethylating agent, which can reactivate TSGs silenced by aberrant DNA methylation. LAQ824 (LAQ) is a novel inhibitor of histone deacetylase (HDAC) that shows antineoplastic activity and can activate genes that produce cell cycle arrest. Both 5AZA-CdR and LAQ as single agents are currently under clinical investigation in patients with cancer. Previous reports indicate that the "cross-talk" between inhibitors of DNA methylation and HDAC can result in a synergistic activation of silent TSGs. These observations suggest that combination of these inhibitors may be an effective form of epigenetic therapy for breast cancer. The objective of our study was to determine if the combination of 5AZA-CdR and LAQ would show additive or synergistic antineoplastic activity on human MDA-MB-231 and MCF-7 breast carcinoma cells. The antineoplastic activity of these agents was evaluated by clonogenic assay and inhibition of DNA synthesis.. The combination produced greater antineoplastic activity for the MDA-MB-231 tumor cells than either agent alone. For the MCF-7 tumor cells, there were signs of antagonism between 5AZA-CdR and LAQ when administered simultaneously. When a sequential schedule (first 5AZA-CdR followed by LAQ) was used, there were no signs of antagonism of the antineoplastic action for the MCF-7 tumor cells. The mechanism of this interaction is probably due to the reduction of progression of MCF-7 tumor cells into S phase by LAQ. This would interfere with the antineoplastic action of 5AZA-CdR, since it is an S phase specific agent.. These studies demonstrated the importance of the schedule of administration of 5AZA-CdR and LAQ and may have application for future clinical trials on the treatment of breast cancer with these agents.

    Topics: Antimetabolites, Antineoplastic; Azacitidine; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Colony-Forming Units Assay; Decitabine; DNA; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Female; Flow Cytometry; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Inhibitory Concentration 50; Neoplastic Stem Cells; S Phase; Time Factors

2006
Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B.
    Molecular cancer therapeutics, 2003, Volume: 2, Issue:10

    Histone deacetylase inhibitors induce hyperacetylation of the amino-terminal lysine residues of the core nucleosomal histones, which results in chromatin remodeling and altered gene expression. Present studies demonstrate that exposure to a novel hydroxamic acid analogue histone deacetylase inhibitor, LAQ824, induced p21WAF1 and p27KIP1 and caused growth arrest and apoptosis of human breast cancer SKBR-3 and BT-474 cells that possess amplification and overexpression of Her-2/neu. Treatment with LAQ824 depleted the mRNA and protein levels of Her-2/neu-encoded Her-2, which was associated with attenuation of pAKT, c-Raf-1, and phosphorylated mitogen-activated protein kinase levels. LAQ824 also induced the acetylation of heat shock protein (hsp) 90, resulting in inhibition of its binding to ATP, which has been shown to impair the chaperone association of hsp 90 with its client proteins, Her-2, AKT, and c-Raf-1. Consistent with this, treatment with LAQ824 shifted the binding of Her-2 from hsp 90 to hsp 70, promoting proteasomal degradation of Her-2. Thus, LAQ824 depletes Her-2 through two mechanisms: attenuation of its mRNA levels and promotion of its degradation by the proteasome. Following LAQ824 treatment, the cell membrane association, autotyrosine phosphorylation, and colocalization of Her-2 with HER-3 also declined. Cotreatment with LAQ824 significantly increased trastuzumab-induced apoptosis of BT-474 and SKBR-3 cells. This was associated with greater attenuation of Her-2, c-Raf-1, and pAKT levels. LAQ824 also enhanced taxotere-induced, epothilone B-induced, and gemcitabine-induced apoptosis of BT-474 and SKBR-3 cells. These findings suggest that LAQ824 is active against human breast cancer cells and has the potential to improve the efficacy of trastuzumab, taxotere, gemcitabine, and epothilone B against breast cancer with Her-2/neuamplification.

    Topics: Annexin A5; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Apoptosis; Blotting, Northern; Blotting, Western; Breast Neoplasms; Cell Line, Tumor; Chromatin; Coloring Agents; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; Cysteine Endopeptidases; Deoxycytidine; Detergents; Docetaxel; Dose-Response Relationship, Drug; Down-Regulation; Enzyme Inhibitors; Epothilones; Flow Cytometry; Gemcitabine; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Multienzyme Complexes; Phosphorylation; Precipitin Tests; Proteasome Endopeptidase Complex; Receptor, ErbB-2; Reverse Transcriptase Polymerase Chain Reaction; Sepharose; Taxoids; Tetrazolium Salts; Thiazoles; Time Factors; Trastuzumab

2003