laminaran has been researched along with Weight-Gain* in 5 studies
2 trial(s) available for laminaran and Weight-Gain
Article | Year |
---|---|
Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and faecal characteristics of growing piglets.
Seaweed extracts (SWE) rich in laminarin and fucoidan have shown promise as a supplement for weaned piglets. However, successful application in pig nutrition depends on their bioactivity in the presence of additives such as ZnO. In the present study, a 2 × 2 factorial experiment was carried out to investigate the effect of the interaction between SWE and ZnO on the growth performance, digestibility and faecal characteristics of 192 weaned piglets (6·5 kg). The piglets were penned in groups of 4 (n 12 pens). The study consisted of two phases after weaning: a starter diet period from the day of weaning (0 d) to 21 d and a transition diet period from 21 to 40 d. The dietary treatments were as follows: (1) control diet; (2) control diet+ZnO; (3) control diet+SWE; (4) control diet+ZnO+SWE. Diets containing ZnO improved the faecal consistency of the piglets throughout the experimental period (0-40 d). An effect of the interaction between ZnO and SWE on several variable was observed. The diet containing only SWE or ZnO improved the feed conversion efficiency of the piglets during the transition diet period; however, this effect was not observed when the diet containing both ZnO and SWE was fed. The diet containing only SWE increased the N and organic matter digestibility of the piglets; however, this effect was not observed in the presence of ZnO. An interaction between ZnO and SWE was observed, whereby the faecal counts of Escherichia coli were decreased when piglets were fed the diet containing only SWE, but not when fed the diet containing both SWE and ZnO. In summary, SWE and ZnO improve growth performance when given alone, but not when given in combination. The biological effect of SWE on selected digestibility and faecal characteristics was markedly different when compared with that of ZnO. Topics: Animals; Anti-Bacterial Agents; Antidiarrheals; Biological Products; Diarrhea; Diet; Digestion; Energy Intake; Escherichia coli; Fatty Acids, Volatile; Feces; Female; Gastrointestinal Tract; Glucans; Laminaria; Male; Polysaccharides; Seaweed; Sus scrofa; Weaning; Weight Gain; Zinc Oxide | 2014 |
Effect of seaweed-derived laminarin and fucoidan and zinc oxide on gut morphology, nutrient transporters, nutrient digestibility, growth performance and selected microbial populations in weaned pigs.
In the present study, two experiments were conducted to (1) evaluate the effect of laminarin and/or fucoidan on ileal morphology, nutrient transporter gene expression and coefficient of total tract apparent digestibility (CTTAD) of nutrients and (2) determine whether laminarin inclusion could be used as an alternative to ZnO supplementation in weaned pig diets. Expt 1 was designed as a 2 × 2 factorial arrangement, comprising four dietary treatments (n 7 replicates, weaning age 24 d, live weight 6·9 kg). The dietary treatments were as follows: (1) basal diet; (2) basal diet+300 ppm laminarin; (3) basal diet+240 ppm fucoidan; (4) basal diet+300 ppm laminarin and 240 ppm fucoidan. There was an interaction between laminarin and fucoidan on the CTTAD of gross energy (GE) (P< 0·05) and the expression of sodium-glucose-linked transporter 1 (SGLT1/SLC5A1) and GLUT1/SLC2A1 and GLUT2/SLC2A2 (P< 0·05) in the ileum. The laminarin diet increased the CTTAD of GE and increased the expression of SGLT1, GLUT1 and GLUT2 compared with the basal diet. However, there was no effect of laminarin supplementation on these variables when combined with fucoidan. Expt 2 was designed as a complete randomised design (n 8 replicates/treatment, weaning age 24 d, live weight 7·0 kg), and the treatments were (1) basal diet, (2) basal diet and laminarin (300 ppm), and (3) basal diet and ZnO (3100 ppm, 0-14 d, and 2600 ppm, 15-32 d post-weaning). The laminarin diet increased average daily gain and gain:feed ratio compared with the basal diet during days 0-32 post-weaning (P< 0·01) and had an effect similar to the ZnO diet. These results demonstrate that laminarin provides a dietary means to improve gut health and growth performance post-weaning. Topics: Animals; Crosses, Genetic; Diet; Digestion; Energy Intake; Female; Gastrointestinal Agents; Gene Expression Regulation, Developmental; Glucans; Ileum; Intestinal Absorption; Intestinal Mucosa; Ireland; Laminaria; Membrane Transport Proteins; Polysaccharides; Seaweed; Sus scrofa; Weaning; Weight Gain; Zinc Oxide | 2014 |
3 other study(ies) available for laminaran and Weight-Gain
Article | Year |
---|---|
Effects of dietary β-1,3-glucan addition on the growth performance, mRNA expression in jejunal barrier, and cecal microflora of broilers challenged with Clostridium perfringens.
This experiment aimed to explore the interaction of β-1,3-glucan and Clostridium perfringens on the growth performance, intestinal health and cecal microflora of broilers. A total of 384 one-day-old Arbor Acre broilers were sorted into 4 treatments with 6 replications. There were 2 factors in this trial: dietary β-1,3-glucan addition including 0 and 250 mg/kg, intestinal enteritis challenged with Clostridium perfringens attack or not. Results showed that Clostridium perfringens infection disrupted the integrity of the intestinal mucosa by reducing the jejunal Occludin and Claudin-1 mRNA expression of broiler chickens at 21 d of age (P < 0.05). Meanwhile, when considering Clostridium perfringens as the main effect, it also decreased the mRNA expression of the glucose transporter recombinant sodium/glucose cotransporter 1 (SGLT1) at d 21 and the fatty acid transporter liver fatty acid-binding protein (L-FABP) at d 42 (P < 0.05) as well as affect cecum microbial diversity, especially in relative abundance of Firmicutes and Bacteroidetes. In addition, Clostridium perfringens infection reduced body weight, daily weight gain, and feed-gain ratio (FCR) in broilers at d 42 (P < 0.05). The dietary β-1,3-glucan could alleviate intestinal mucosal damage caused by the Clostridium perfringens to some extent. When considering β-1,3-glucan as the main effect, it increased the SGLT1 at 42 d of age (P < 0.05), and stabilized gut microbiota disorder caused by Clostridium perfringens. More over dietary β-1,3-glucan addition increased body weight at 42-day-old (P < 0.05), and improved daily weight gain and FCR during 1 to 42 d (P < 0.05). In conclusion, dietary β-1,3-glucan could improve growth performance and intestinal health in broilers infected with Clostridium perfringens. Topics: Animal Feed; Animals; Body Weight; Cecum; Chickens; Clostridium Infections; Clostridium perfringens; Diet; Dietary Supplements; Gastrointestinal Microbiome; Glucans; Poultry Diseases; RNA, Messenger; Weight Gain | 2023 |
Effect of a Laminarin Rich Macroalgal Extract on the Caecal and Colonic Microbiota in the Post-Weaned Pig.
Dietary supplementation with 300 ppm of a laminarin rich macroalgal extract reduces post-weaning intestinal dysfunction in pigs. A comprehensive analysis of the impact of laminarin on the intestinal microbiome during this period is essential to inform on the mode of action of this bioactivity. The objective of this study was to evaluate the effects of supplementing the diet of newly weaned pigs with 300 ppm of a laminarin rich extract, on animal performance, volatile fatty acids, and the intestinal microbiota using 16S rRNA gene sequencing. Pigs fed the laminarin-supplemented diet had higher average daily feed intake, growth rate, and body weight compared to pigs fed the control diet ( Topics: Animal Feed; Animals; Cecum; Colon; Dietary Supplements; Enterobacteriaceae; Fatty Acids; Gastrointestinal Microbiome; Glucans; Microalgae; RNA, Ribosomal, 16S; Swine; Weight Gain | 2020 |
Laminarin favorably modulates gut microbiota in mice fed a high-fat diet.
We investigated the anti-obesity effects of the potential prebiotic, laminarin, on mice fed a high-fat diet. A metagenomics approach was applied to characterize the ecological and functional differences of gut microbiota among mice fed a normal diet (CTL), a high-fat diet (HFD), and a laminarin-supplemented high-fat diet (HFL). The HFL mice showed a slower weight gain than the HFD mice during the laminarin-feeding period, but the rate of weight gain increased after the termination of laminarin supplementation. Gut microbial community analysis showed clear differences between the CTL and HFD mice, whereas the HFL mice were between the two. A higher abundance of carbohydrate active enzymes was observed in the HFL mice compared to the HFD mice, with especially notable increases in glycoside hydrolase and polysaccharide lyases. A significant decrease in Firmicutes and an increase in the Bacteroidetes phylum, especially the genus Bacteroides, were observed during laminarin ingestion. Laminarin ingestion altered the gut microbiota at the species level, which was re-shifted after termination of laminarin ingestion. Therefore, supplementing laminarin could reduce the adverse effects of a high-fat diet by shifting the gut microbiota towards a higher energy metabolism. Thus, laminarin could be used to develop anti-obesity functional foods. Our results also suggest that laminarin would need to be consumed regularly in order to prevent or manage obesity. Topics: Animals; Dietary Fats; Female; Gastrointestinal Microbiome; Glucans; Mice; Mice, Inbred BALB C; Random Allocation; Weight Gain | 2016 |