laminaran and DNA-Virus-Infections

laminaran has been researched along with DNA-Virus-Infections* in 2 studies

Other Studies

2 other study(ies) available for laminaran and DNA-Virus-Infections

ArticleYear
Lipopolysaccharide- and β-1,3-glucan-binding protein from Litopenaeus vannamei: Purification, cloning and contribution in shrimp defense immunity via phenoloxidase activation.
    Developmental and comparative immunology, 2018, Volume: 81

    Lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) existed in diversity of invertebrates including shrimp plays a crucial role in an innate immunity via mediating the recognition of invading pathogens. In this study, LGBP was cloned and characterized from the hepatopancreas of Litopenaeus vannamei, named as LvLGBP. Its full-length cDNA of 1282 bp contained an open reading frame (1101 bp) encoding a peptide of 367 amino acids. The LGBP primary structure contained a glycosyl hydrolase domain, two integrin binding motifs, two kinase C phosphorylation sites, and two polysaccharide recognition motifs which were identified as a polysaccharide binding motif and a β-1,3-glucan recognition motif. The LvLGBP transcripts were expressed mainly in the hepatopancreas. Upon challenge with Vibrio parahaemolyticus or white spot syndrome virus (WSSV), the LvLGBP mRNA expression was significantly up-regulated to reach a maximum at 48 h post injection. Its expression was also induced by lipopolysaccharide (LPS) or β-1,3-glucan stimulation. RNAi-based silencing resulted in the critical suppression of LvLGBP expression. Knockdown of LvLGBP gene with co-inoculation by V. parahaemolyticus or WSSV led to increase in the cumulative mortality and reduce in the median lethal time. Native LGBP was detected only in the hepatopancreas as verified by Western blotting. Purified LGBP from the hepatopancreas exhibited the agglutinating and binding activity towards Gram-negative bacterium V. parahaemolyticus with calcium-dependence. Its agglutinating activity was dominantly inhibited by LPS with higher potential than β-1,3-glucan. Purified LvLGBP could significantly activate the hemocyte phenoloxidase activity in the presence of LPS (12.9 folds), while slight activation was detected with β-1,3-glucan (2.0 folds). It could enhance the encapsulation by hemocytes but did not have antibacterial activity. These results provided evidence that LvLGBP might act as a pathogenic recognition protein to activate shrimp immune defense against invading pathogens via the agglutination, binding and enhancing encapsulation and phenoloxidase activity of the hemocytes.

    Topics: Animals; Artemia; beta-Glucans; Carrier Proteins; Cloning, Molecular; DNA Virus Infections; Hepatopancreas; Immunity, Innate; Lectins; Lipopolysaccharides; Monophenol Monooxygenase; Receptors, Pattern Recognition; RNA, Small Interfering; Vibrio Infections; Vibrio parahaemolyticus; White spot syndrome virus 1

2018
Dietary beta-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus.
    Fish & shellfish immunology, 2003, Volume: 15, Issue:4

    The effectiveness of dietary beta-1,3-glucan (BG), derived from Schizophyllum commune, in modulating the non-specific immunity of the grass prawn Penaeus monodon and its resistance to white spot syndrome virus (WSSV) were investigated. Juvenile P. monodon (6.5+/-0.4 g) were fed for 20 days on a series of test diets containing graded levels of BG (0, 1, 2, 10, 20 g kg(-1)diet) and were then challenged by injection of WSSV. The haemolymph total haemocyte count (THC), phagocytosis (PI), phenoloxidase (PO), superoxide anion (O(2)(-)) and superoxide dismutase (SOD) production were measured at days 0, 1, 3, 6, 9, 12 and 24 after challenge, and shrimp survival rate was also recorded. All the shrimps fed on diets containing BG no more than 1 g kg(-1)died by day 12. Conversely, the survival rate of shrimp fed with the diet containing 10 g kg(-1)BG was significantly higher (P<0.05) by day 9 than that of the other groups. When screened by the WSSV PCR diagnostic procedure, the percentages of surviving juveniles of the BG 2, 10, 20 g kg(-1)groups that were 2-step WSSV negative, were 55, 65 and 65%, respectively. The haemolymph THC, PO, O(2)(-)and SOD production of the 2, 10 and 20 g kg(-1)BG diet groups dropped drastically immediately after the WSSV challenge but subsequently returned to normal. Therefore, oral administration of BG at an optimal level of 10 g kg(-1)diet for 20 days effectively enhanced the immune system and improved the survival of WSSV-infected P. monodon.

    Topics: Animals; Aquaculture; beta-Glucans; DNA Virus Infections; DNA Viruses; Glucans; Hemocytes; Monophenol Monooxygenase; Penaeidae; Phagocytosis; Polymerase Chain Reaction; Superoxide Dismutase; Superoxides

2003