laminaran and Adenocarcinoma

laminaran has been researched along with Adenocarcinoma* in 2 studies

Other Studies

2 other study(ies) available for laminaran and Adenocarcinoma

ArticleYear
Orally administered brown seaweed-derived β-glucan effectively restrained development of gastric dysplasia in A4gnt KO mice that spontaneously develop gastric adenocarcinoma.
    International immunopharmacology, 2018, Volume: 60

    β-Glucan refers to a heterogeneous group of chemically defined storage polysaccharides containing β-(1,3)-d-linked glucose polymers with branches connected by either β-(1,4) or β-(1,6) glycosidic linkage. To date, an extensive amount of scientific evidence supports their multifunctional biological activities, but their potential involvement in the progression of premalignant lesions remains to be clarified. A4gnt KO mice that lack α1,4-N-acetylglucosamine-capped O-glycans in gastric gland mucin are a unique animal model for gastric cancer because the mutant mice spontaneously develop gastric cancer through hyperplasia-dysplasia-adenocarcinoma sequence. In particular, A4gnt KO mice show gastric dysplasia during 10-20 weeks of age. Here we investigated the putative gastro-protective activity of brown seaweed-derived β-glucan (Laminaran) against development of gastric dysplasia, precancerous lesion for gastric cancer in A4gnt KO mice. The mutant mice at 12 weeks of age were randomly assigned into three treatment groups namely, wildtype control + distilled water (normal control), A4gnt KO mice + distilled water (untreated control), and A4gnt KO mice + 100 mg/kg Laminaran. After 3 weeks, the stomach was removed and examined for morphology and gene expression patterns. In contrast to the untreated control group, administration of Laminaran substantially attenuated gastric dysplasia development and counterbalanced the increased induction in cell proliferation and angiogenesis. Furthermore, Laminaran treatment effectively overcame the A4gnt KO-induced alteration in the gene expression profile of selected cytokines as revealed by real-time PCR analysis. Collectively, our present findings indicate that β-glucan can potentially restrain the development of gastric dysplasia to mediate their tissue-preserving activity.

    Topics: Adenocarcinoma; Animals; Anticarcinogenic Agents; Cytokines; Female; Gastric Mucosa; Gene Expression Regulation; Glucans; Male; Mice, Knockout; Phaeophyceae; Phytotherapy; Seaweed; Stomach Neoplasms

2018
Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells.
    Cancer research, 2003, Dec-15, Volume: 63, Issue:24

    The tumor-killing mechanisms available to monoclonal antibodies (mAbs; e.g., antagonism of growth factor receptors, antibody-dependent cell-mediated cytotoxicity) limit efficacy. Previous studies suggested that i.v. beta-glucan might function as an adjuvant for antitumor mAbs. beta- Glucan had been shown to function via the iC3b-receptor complement receptor 3 (CR3; CD11b/CD18) thereby enhancing leukocyte killing of tumor cells coated with iC3b via naturally occurring antitumor antibodies. Therapy with beta-glucans was limited by levels of natural antibodies and by tumor escape through elimination of antigen-positive cells. Accordingly, it was hypothesized that beta-glucan responses could be improved by combined administration with antitumor mAbs. Five tumor models were explored in BALB/c or C57Bl/6 mice using tumors that expressed either high levels of naturally occurring antigens (e.g., G(D2) ganglioside) or recombinant human MUC1. In comparison with antitumor mAb or beta-glucan alone, combined treatment with mAb plus beta-glucan produced significantly greater tumor regression in all models that included mammary, s.c., and hepatic tumors. Tumor-free survival only occurred in models that incorporated stable expression of the target antigen. beta-Glucan enhancement of the mAb tumoricidal response did not occur in mice deficient in either leukocyte CR3 (CD11b(-/-)) or serum C3, confirming the requirement for CR3 on leukocytes and iC3b on tumors. Granulocytes appeared to be primarily responsible for tumoricidal activity, because beta-glucan therapeutic responses did not occur in granulocyte-depleted mice. These data suggest that the therapeutic efficacy of mAbs known to activate complement (e.g., Herceptin, Rituxan, and Erbitux) could be significantly enhanced if they were combined with beta-glucan.

    Topics: Adenocarcinoma; Adjuvants, Immunologic; Animals; Antibodies, Monoclonal; beta-Glucans; Complement C3; Complement C3b; Glucans; Granulocytes; Immunotherapy; Macrophage-1 Antigen; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL

2003