lactoferrin and Rodent-Diseases

lactoferrin has been researched along with Rodent-Diseases* in 2 studies

Other Studies

2 other study(ies) available for lactoferrin and Rodent-Diseases

ArticleYear
Inhibitory effects of lactoferrin on pulmonary inflammatory processes induced by lipopolysaccharide by modulating the TLR4-related pathway.
    Journal of dairy science, 2021, Volume: 104, Issue:7

    This study tested the ability of lactoferrin to modulate pulmonary inflammation. To construct in vitro and in vivo inflammatory lung models, cells from the human lung adenocarcinoma cell line (A549) were exposed to lipopolysaccharide (LPS, 1 µg/mL), and mice (CD-1) were intratracheally administered LPS [10 mg/kg of body weight (BW), tracheal lumen injection], respectively. The A549 cells were preincubated with lactoferrin (10 mg/mL), and the mice were intraperitoneally injected with lactoferrin (100 mg/kg of BW), followed by LPS treatment. The concentrations of proinflammatory cytokines (IL-1β and TNF-α) in culture medium of A549 cells and in bronchoalveolar lavage fluid of the mice were determined using enzyme-linked immunosorbent assays. The toll-like receptor 4-related pathway (TLR4/MyD88/IRAK1/TRAF6/NFκB) was determined at gene and protein expression levels in A549 cells and mouse lung tissue. Results showed that LPS treatment significantly elevated the concentrations of IL-1β and TNF-α in the A549 cell culture medium and in bronchoalveolar lavage fluid of the mice; it also elevated both the mRNA and protein expressions of TLR4 and the TLR4 downstream factors in A549 cells and mouse lung tissue. Nevertheless, lactoferrin apparently depressed the releases of IL-1β and TNF-α from A549 cells and lung tissues stimulated by LPS, and significantly suppressed the TLR4 signaling pathway. Lactoferrin also promoted the enhancement of miR-146a expression in A549 cells and mouse lung tissue. Moreover, 100°C heating for 3 min caused total loss of the previously listed bioactivity of lactoferrin. Collectively, we proved that lactoferrin intervened in LPS-induced inflammation in the pulmonary cell model and in the mouse model, through inhibiting the TLR4-related pathway.

    Topics: Animals; Lactoferrin; Lipopolysaccharides; Lung; Mice; NF-kappa B; Pneumonia; Rodent Diseases; Toll-Like Receptor 4

2021
The pain-relieving effects of lactoferrin on oxaliplatin-induced neuropathic pain.
    The Journal of veterinary medical science, 2020, Dec-05, Volume: 82, Issue:11

    Oxaliplatin (OXL) therapy often causes side effects including chronic peripheral neuropathy. We investigated the pain-relieving effects of recombinant human lactoferrin (rhLf) as well as a long-acting IgG-Fc fused rhLf (rhLf-Fc) on OXL-induced neuropathic pain. We used the hLf in this study, because the homology between mouse Lf and hLf is higher than that of bovine Lf. In addition, rhLf-Fc is expected to enhance the analgesic effect due to the life extension effect in the body. We administered OXL (2 mg/kg, i.v.) to mice twice weekly for 4 weeks. Phosphate buffered saline (PBS), rhLf (100 mg/kg, i.p.) or rhLf-Fc (100 mg/kg, i.p.) was administered once a week from day 15 to 32. We also assessed the continuous infusion of same drugs (10 mg/kg/day) into the external jugular vein by using an osmotic pump. Both of rhLf and rhLf-Fc significantly reduced the hypersensitivity to mechanical stimulation when they were administered intraperitoneally. The continuous infusion of rhLf resulted in a more pronounced effect. Histopathological analysis of sciatic nerve showed that both rhLf and rhLf-Fc tended to reduce nerve fiber damage, but no significant difference was observed in nerve fiber cross-sectional area. Therefore, it was suggested that rhLf or rhLf-Fc injection could be an option for controlling neuropathic pain, which are side effects of OXL.

    Topics: Animals; Cattle; Cattle Diseases; Lactoferrin; Mice; Neuralgia; Oxaliplatin; Recombinant Proteins; Rodent Diseases

2020