lactoferrin has been researched along with Meningitis--Meningococcal* in 2 studies
2 other study(ies) available for lactoferrin and Meningitis--Meningococcal
Article | Year |
---|---|
The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.
Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. Topics: Anti-Bacterial Agents; Bacterial Proteins; Carrier Proteins; Humans; Lactoferrin; Meningitis, Meningococcal; Models, Molecular; Mutation; Neisseria meningitidis | 2014 |
Comparison of the abilities of different protein sources of iron to enhance Neisseria meningitidis infection in mice.
This study was done primarily to determine whether the previously observed specificity of the meningococcal transferrin and lactoferrin receptors for human proteins was maintained in vivo during meningococcal infection in mice. Preliminary experiments evaluating the choice of host strain, the age and sex of mice, and the growth conditions of the meningococci indicated that 45-day-old female Swiss Webster mice challenged with meningococci grown on low-pH, low-iron Mueller-Hinton agar plates were appropriate for this study. The comparison of transferrins and lactoferrins from different species demonstrated that only the human forms of these proteins were utilized by meningococci; there was significantly greater mortality among mice treated with iron-saturated human transferrin or lactoferrin (93 and 100%, respectively) than among those not treated or treated with iron-saturated bovine transferrin or bovine lactoferrin (0%). Provision of exogenous hemoglobin also resulted in increased mortality, although not as great as that observed with amounts of transferrin with equivalent iron content, which parallels the more effective utilization of transferrin and lactoferrin in in vitro growth experiments. In addition, unlike with transferrin and lactoferrin, there was no difference in utilization of human and bovine hemoglobin in vitro or in vivo. Topics: Animals; Cattle; Disease Models, Animal; Female; Humans; Injections, Intraperitoneal; Lactoferrin; Lactoglobulins; Meningitis, Meningococcal; Mice; Mice, Inbred C57BL; Neisseria meningitidis; Receptors, Cell Surface; Receptors, Transferrin; Transferrin | 1989 |