lactoferricin-b has been researched along with Inflammation* in 3 studies
1 review(s) available for lactoferricin-b and Inflammation
Article | Year |
---|---|
The anti-catabolic role of bovine lactoferricin in cartilage.
Bovine lactoferricin (LfcinB) is a multifunctional peptide derived from bovine lactoferrin that demonstrates antibacterial, antifungal, antiviral, antitumor, and immunomodulatory activities. Recently, studies have focused on the anti-catabolic and anti-inflammatory potential of LfcinB. LfcinB is able to modulate the effects cytokines such as IL-1 and fibroblast growth factor 2 as well as promote specific cartilage anabolic factors. These properties are particularly important in maintaining cartilage homeostasis and preventing a catabolic state, which leads to clinical pathology. This review focuses on the recent literature elucidating the role of LfcinB in preventing cartilage degradation. Topics: Animals; Anti-Inflammatory Agents; Cartilage; Endopeptidases; Fibroblast Growth Factor 2; Inflammation; Interleukin-1; Intervertebral Disc; Lactoferrin; Matrix Metalloproteinases | 2013 |
2 other study(ies) available for lactoferricin-b and Inflammation
Article | Year |
---|---|
Regulation of macrophage-associated inflammatory responses by species-specific lactoferricin peptides.
Inflammation is the body's response to injury or infection and is important for healing and eliminating pathogens; however, prolonged inflammation is damaging and may lead to the development of chronic inflammatory disorders. Recently, there has been interest in exploiting antimicrobial peptides (AMPs) that exhibit immunoregulatory activities to treat inflammatory diseases.. In this study, we investigated the immunomodulatory effects of lactoferrin-derived lactoferricin AMPs from three different species (bovine, mouse, and human) with subtle differences in their amino acid sequences that alter their antimicrobial action; to our knowledge, no other studies have compared their immunomodulatory effects. Macrophages, key players in the induction and propagation of inflammation, were used to investigate the effects of species-specific lactoferricin peptides on inflammatory processes.. Bovine lactoferricin was the only one of the three peptides studied that downregulated lipopolysaccharide (LPS)-induced pro-inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, in both human and mouse macrophages. Lactoferricin regulated inflammation through targeting LPS-activated nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Although the immunoregulatory role of lactoferricin during an inflammatory response. The ability of lactoferricin, especially that of bovine origin, to downregulate macrophage-mediated inflammatory responses suggests potential for the development of this peptide as a novel immunotherapeutic agent in the treatment of chronic inflammatory conditions. Topics: Animals; Cattle; Cytokines; Humans; Inflammation; Lactoferrin; Lipopolysaccharides; Macrophages; Mice; NF-kappa B; Peptides | 2022 |
Complete regression and systemic protective immune responses obtained in B16 melanomas after treatment with LTX-315.
Malignant melanoma is the most aggressive and deadliest form of skin cancer due to its highly metastatic potential, which calls for new and improved therapies. Cationic antimicrobial peptides (CAPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line of defense against pathogens, and several CAPs have shown promising potential as novel anticancer agents. Structure-activity relationship studies on the CAP bovine lactoferricin allowed us to de novo design short chemically modified lytic anticancer peptides. In the present study, we investigated the in vivo antitumor effects of LTX-315 against intradermally established B16 melanomas in syngeneic mice. Intratumoral administration of LTX-315 resulted in tumor necrosis and the infiltration of immune cells into the tumor parenchyma followed by complete regression of the tumor in the majority of the animals. LTX-315 induced the release of danger-associated molecular pattern molecules such as the high mobility group box-1 protein in vitro and the subsequent upregulation of proinflammatory cytokines such as interleukin (IL) 1β, IL6 and IL18 in vivo. Animals cured by LTX-315 treatment were protected against a re-challenge with live B16 tumor cells both intradermally and intravenously. Together, our data indicate that intratumoral treatment with LTX-315 can provide local tumor control followed by protective immune responses and has potential as a new immunotherapeutic agent. Topics: Animals; Antimicrobial Cationic Peptides; Blotting, Western; Cattle; Cells, Cultured; Cytokines; Female; Hemolysis; Humans; Inflammation; Inflammation Mediators; Lactoferrin; Lymphocytes, Tumor-Infiltrating; Melanoma; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Mice, Nude; Peptide Fragments | 2014 |