lactoferricin-b and Escherichia-coli-Infections

lactoferricin-b has been researched along with Escherichia-coli-Infections* in 4 studies

Other Studies

4 other study(ies) available for lactoferricin-b and Escherichia-coli-Infections

ArticleYear
Oral Administration of Bovine Lactoferrin-Derived Lactoferricin (Lfcin) B Could Attenuate Enterohemorrhagic Escherichia coli O157:H7 Induced Intestinal Disease through Improving Intestinal Barrier Function and Microbiota.
    Journal of agricultural and food chemistry, 2019, Apr-10, Volume: 67, Issue:14

    Lactoferricin (Lfcin) B, derived from lactoferrin in whey, has attracted considerable attention because of its multiple biological functions. Zoonotic enterohemorrhagic Escherichia coli (EHEC) O157:H7 has adverse effects on intestinal epithelial barrier function, leading to serious intestinal disease. In this study, the EHEC O157:H7-induced intestinal dysfunction model was developed to investigate the effects of Lfcin B on EHEC O157:H7-induced epithelial barrier disruption and microbiota dysbiosis. Results showed that the inflammatory infiltration indexes in the jejunum of Lfcin B-treated animals were significantly decreased. Lfcin B administration also significantly improved ZO-1 and occludin expression following O157:H7-induced injury. Finally, microbiota analysis of the cecal samples revealed that Lfcin B inhibited the O157:H7-induced abnormal increase in Bacteroides. Therefore, Lfcin B efficiently attenuated O157:H7-induced epithelial barrier damage and dysregulation of inflammation status, while maintaining microbiota homeostasis in the intestine, indicating that it may be an excellent food source for prevention and therapy of EHEC O157:H7-related intestinal dysfunction.

    Topics: Administration, Oral; Animals; Bacteria; Cattle; Escherichia coli Infections; Escherichia coli O157; Gastrointestinal Microbiome; Humans; Intestinal Diseases; Lactoferrin; Male; Mice; Mice, Inbred C57BL

2019
Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
    Biochemistry, 2015, Sep-29, Volume: 54, Issue:38

    Enzymatic digestion of bovine lactoferrin generates lactoferricin B (Lfcin B), a 25-mer peptide with strong antimicrobial activity of unknown mechanism. To elucidate the mechanistic basis of Lfcin B bactericidal activity, we investigated the interaction of Lfcin B with Escherichia coli and liposomes of lipid membranes. Lfcin B induced the influx of a membrane-impermeant fluorescent probe, SYTOX green, from the outside of E. coli into its cytoplasm. Lfcin B induced gradual leakage of calcein from large unilamellar vesicles (LUVs) of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes. To clarify the cause of Lfcin B-induced leakage of calcein from the LUVs, we used the single giant unilamellar vesicle (GUV) method to investigate the interaction of Lfcin B with calcein-containing DOPG/DOPC-GUVs. We observed that a rapid leakage of calcein from a GUV started stochastically; statistical analysis provided a rate constant for Lfcin B-induced pore formation, kp. On the other hand, phase-contrast microscopic images revealed that Lfcin B induced a rapid leakage of sucrose from the single GUVs with concomitant appearance of a spherical GUV of smaller diameter. Because of the very fast leakage, and at the present time resolution of the experiments (33 ms), we could not follow the evolution of pore nor the process of the structural changes of the GUV. Here we used the term "local rupture" to express the rapid leakage of sucrose and determined the rate constant of local rupture, kL. On the basis of the comparison between kp and kL, we concluded that the leakage of calcein from single GUVs occurred as a result of a local rupture in the GUVs and that smaller pores inducing leakage of calcein were not formed before the local rupture. The results of the effect of the surface charge density of lipid membranes and that of salt concentration in buffer on kp clearly show that kp increases with an increase in the extent of electrostatic interactions due to the surface charges. Analysis of Lfcin B-induced shape changes indicated that the binding of Lfcin B increased the area of the outer monolayer of GUVs. These results indicate that Lfcin B-induced damage of the plasma membrane of E. coli with its concomitant rapid leakage of internal contents is a key factor for the bactericidal activity of LfcinB.

    Topics: Amino Acid Sequence; Animals; Anti-Bacterial Agents; Cattle; Cell Membrane Permeability; Escherichia coli; Escherichia coli Infections; Fluoresceins; Fluorescent Dyes; Humans; Lactoferrin; Molecular Sequence Data; Organic Chemicals; Phosphatidylcholines; Phosphatidylglycerols; Static Electricity; Sucrose; Unilamellar Liposomes

2015
Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d.
    The British journal of nutrition, 2009, Volume: 101, Issue:7

    Lactoferrin has antimicrobial activity associated with peptide fragments lactoferricin (LFC) and lactoferrampin (LFA) released on digestion. These two fragments have been expressed in Photorhabdus luminescens as a fusion peptide linked to protein cipB. The construct cipB-LFC-LFA was tested as an alternative to antimicrobial growth promoters in pig production. Sixty piglets with an average live body weight of 5.42 (sem 0.59) kg were challenged with enterotoxigenic Escherichia coli and randomly assigned to four treatment groups fed a maize-soyabean meal diet containing either no addition (C), cipB at 100 mg/kg (C+B), cipB-LFC-LFA at 100 mg/kg (C+L) or colistin sulfate at 100 mg/kg (C+CS) for 3 weeks. Compared with C, dietary supplementation with C+L for 3 weeks increased daily weight gain by 21 %, increased recovery from diarrhoea, enhanced serum glutathione peroxidase (GPx), peroxidase (POD) and total antioxidant content (T-AOC), liver GPx, POD, superoxide dismutase and T-AOC, Fe, total Fe-binding capacity, IgA, IgG and IgM levels (P < 0.05), decreased the concentration of E. coli in the ileum, caecum and colon (P < 0.05), increased the concentration of lactobacilli and bifidobacteria in the ileum, caecum and colon (P < 0.05), and promoted development of the villus-crypt architecture of the small intestine. Growth performance was similar between C+L- and C+CS-supplemented pigs. The present results indicate that LFC-LFA is an effective alternative to the feed antibiotic CS for enhancing growth performance in piglets weaned at age 21 d.

    Topics: Animal Feed; Animals; Anti-Bacterial Agents; Antioxidants; Bacterial Proteins; Cattle; Colistin; Diarrhea; Dietary Supplements; Enterotoxigenic Escherichia coli; Escherichia coli Infections; Genetic Engineering; Intestinal Mucosa; Lactoferrin; Lactoglobulins; Liver; Male; Peptide Fragments; Random Allocation; Recombinant Proteins; Swine; Swine Diseases; Weaning

2009
Effect of lactoferricin on fluoroquinolone susceptibility of uropathogenic Escherichia coli.
    The Journal of antibiotics, 2009, Volume: 62, Issue:2

    Topics: Anti-Bacterial Agents; Drug Resistance, Bacterial; Drug Synergism; Escherichia coli; Escherichia coli Infections; Fluoroquinolones; Lactoferrin; Microbial Sensitivity Tests; Reverse Transcriptase Polymerase Chain Reaction; Urinary Tract Infections

2009