lactoferricin-b and Bacterial-Infections

lactoferricin-b has been researched along with Bacterial-Infections* in 3 studies

Other Studies

3 other study(ies) available for lactoferricin-b and Bacterial-Infections

ArticleYear
Designing Chimeric Peptides: A Powerful Tool for Enhancing Antibacterial Activity.
    Chemistry & biodiversity, 2021, Volume: 18, Issue:2

    Chimeric peptides containing short sequences derived from bovine Lactoferricin (LfcinB) and Buforin II (BFII) were synthetized using solid-phase peptide synthesis (SPPS) and characterized via reversed-phase liquid chromatography and mass spectrometry. The chimeras were obtained with high purity, demonstrating their synthetic viability. The chimeras' antibacterial activity against Gram-positive and Gram-negative strains was evaluated. Our results showed that all the chimeras exhibited greater antibacterial activity against the evaluated strains than the individual sequences, suggesting that chemical binding of short sequences derived from AMPs significantly increased the antibacterial activity. For each strain, the chimera with the best antibacterial activity exerted a bacteriostatic and/or bactericidal effect, which was dependent on the concentration. It was found that: (i) the antibacterial activity of a chimera is mainly influenced by the linked sequences, the palindromic motif RLLRRLLR being the most relevant one; (ii) the inclusion of a spacer between the short sequences did not significantly affect the chimera's synthesis process; however, it enhanced its antibacterial activity against Gram-negative and Gram-positive strains; on the other hand, (iii) the replacement of Arg with Lys in the LfcinB or BFII sequences improved the chimeras' synthesis process without significantly affecting their antibacterial activity. These results illustrate the great importance of the synthesis of chimeric peptides for the generation of promising antibacterial peptides.

    Topics: Animals; Anti-Bacterial Agents; Bacteria; Bacterial Infections; Cattle; Humans; Lactoferrin; Peptide Fragments; Proteins; Solid-Phase Synthesis Techniques

2021
Targeting antibiotic tolerance in anaerobic biofilms associated with oral diseases: Human antimicrobial peptides LL-37 and lactoferricin enhance the antibiotic efficacy of amoxicillin, clindamycin and metronidazole.
    Anaerobe, 2021, Volume: 71

    Antimicrobial peptides are receiving increasing attention as potential therapeutic agents for treating biofilm-related infections of the oral cavity. Many bacteria residing in biofilms exhibit an enhanced antibiotic tolerance, which grants intrinsically susceptible microorganisms to survive lethal concentrations of antibiotics. In this study, we examined the effects of two endogenous human antimicrobial peptides, LL-37 and human Lactoferricin, on the antibiotic drug efficacy of amoxicillin, clindamycin and metronidazole in two types of polymicrobial biofilms, which aimed to represent frequent oral diseases: (1) facultative anaerobic (Streptococcus mutans, Streptococcus sanguinis, Actinomyces naeslundii) and (2) obligate anaerobic biofilms (Veillonella parvula, Parvimonas micra, Fusobacterium nucleatum). LL-37 and Lactoferricin enhanced the anti-biofilm effect of amoxicillin and clindamycin in facultative anaerobic biofilms. Metronidazole alone was ineffective against facultative anaerobic biofilms, but the presence of LL-37 and Lactoferricin led to a greater biofilm reduction. Obligate anaerobic biofilms showed an increased drug tolerance to amoxicillin and clindamycin, presumably due to metabolic downshifts of the bacteria residing within the biofilm. However, when combined with LL-37 or Lactoferricin, the reduction of obligate anaerobic biofilms was markedly enhanced for all antibiotics, even for amoxicillin and clindamycin. Furthermore, our results suggest that antimicrobial peptides enhance the dispersion of matured biofilms, which may be one of their mechanisms for targeting biofilms. In summary, our study proves that antimicrobial peptides can serve as an auxiliary treatment strategy for combatting enhanced antibiotic tolerance in bacterial biofilms.

    Topics: Amoxicillin; Anti-Bacterial Agents; Antimicrobial Peptides; Bacteria, Anaerobic; Bacterial Infections; Biofilms; Clindamycin; Humans; Lactoferrin; Metronidazole; Microbial Sensitivity Tests; Mouth Diseases

2021
Lactoferrin binds CpG-containing oligonucleotides and inhibits their immunostimulatory effects on human B cells.
    Journal of immunology (Baltimore, Md. : 1950), 2001, Sep-01, Volume: 167, Issue:5

    Unmethylated CpG dinucleotide motifs in bacterial DNA, as well as oligodeoxynucleotides (ODN) containing these motifs, are potent stimuli for many host immunological responses. These CpG motifs may enhance host responses to bacterial infection and are being examined as immune activators for therapeutic applications in cancer, allergy/asthma, and infectious diseases. However, little attention has been given to processes that down-modulate this response. The iron-binding protein lactoferrin is present at mucosal surfaces and at sites of infection. Since lactoferrin is known to bind DNA, we tested the hypothesis that lactoferrin will bind CpG-containing ODN and modulate their biological activity. Physiological concentrations of lactoferrin (regardless of iron content) rapidly bound CpG ODN. The related iron-binding protein transferrin lacked this capacity. ODN binding by lactoferrin did not require the presence of CpG motifs and was calcium independent. The process was inhibited by high salt, and the highly cationic N-terminal sequence of lactoferrin (lactoferricin B) was equivalent to lactoferrin in its ODN-binding ability, suggesting that ODN binding by lactoferrin occurs via charge-charge interaction. Heparin and bacterial LPS, known to bind to the lactoferricin component of lactoferrin, also inhibited ODN binding. Lactoferrin and lactoferricin B, but not transferrin, inhibited CpG ODN stimulation of CD86 expression in the human Ramos B cell line and decreased cellular uptake of ODN, a process required for CpG bioactivity. Lactoferrin binding of CpG-containing ODN may serve to modulate and terminate host response to these potent immunostimulatory molecules at mucosal surfaces and sites of bacterial infection.

    Topics: Adjuvants, Immunologic; B-Lymphocytes; Bacterial Infections; Base Sequence; Cell Line; CpG Islands; DNA, Bacterial; Humans; Lactoferrin; Oligodeoxyribonucleotides; Protein Binding

2001