lacidipine has been researched along with Cerebrovascular-Disorders* in 5 studies
5 other study(ies) available for lacidipine and Cerebrovascular-Disorders
Article | Year |
---|---|
Functional reduction and associated cellular rearrangement in SHRSP rat basilar arteries are affected by salt load and calcium antagonist treatment.
The stroke-prone spontaneously hypertensive rat (SHRSP) is a strain with high incidence of cerebrovascular accidents increased by salt-rich diet and decreased by calcium-antagonist treatment. In the SHRSP rat basilar artery the authors have previously shown reduced contractility and altered structure including regions of smooth muscle cell (SMC) disorganization. The aims of this study have been to analyze (1) the morphology of these abnormal regions, (2) the structural modifications responsible for the reduced function, and (3) the effect of salt and calcium-antagonist treatment on vascular structure and function. Wistar Kyoto and SHRSP rats, untreated or treated from week 8 through 14 with 1% NaCl or 1% NaCl + 1 mg x kg(-1) x d(-1) lacidipine, were used. Function was studied with wire myography. Structure was analyzed in fixed intact arteries with confocal microscopy. Basilar arteries from SHRSP rat showed (1) reduced contractility, (2) discrete foci of SMC disarray with altered proportion of adventitia to SMC, and (3) decreased SMC and increased adventitial cell number. Arteries from salt-loaded SHRSP rats showed a higher degree of SMC disarray and further reduction in contractility. Lacidipine treatment of salt-loaded rats significantly improved structure and function. These data suggest that vascular remodeling can provide an explanation for the observed reduction in vascular contractility of SHRSP rat basilar arteries and might show light on the effects of salt load and calcium-channel blockers in life span and the incidence of cerebrovascular accidents in SHRSP rats. Topics: Animals; Antihypertensive Agents; Basilar Artery; Calcium Channel Blockers; Cerebrovascular Disorders; Dihydropyridines; Genetic Predisposition to Disease; Hypertension; Microscopy, Confocal; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Sodium Chloride, Dietary | 1999 |
Therapeutic effects of a calcium antagonist, lacidipine, on stroke-prone spontaneously hypertensive rats with cerebrovascular lesions.
The aim of this study was to investigate the therapeutic effectiveness of lacidipine in stroke-prone spontaneously hypertensive rat (SHRSP) with cerebrovascular lesions in comparison with nicardipine. SHRSP were fed 1% saline as drinking water. After the onset of stroke, saline was replaced with water and each drug was administered orally once a day for 3 weeks. In the drug-untreated group, recurrence of stroke was repeated, deterioration and amelioration of neurological deficits (ND) were repeated, and histological examination and measurement of regional blood flow (rBF) using nonradioactive colored microspheres performed at the end of treatment revealed severe damages and significantly decreased rBF in brain and kidney, respectively. In kidney, not only lacidipine (1 mg/kg) but also nicardipine (30 mg/kg) decreased vascular lesions and ameliorated low-rBF significantly. Both drugs also inhibited the recurrence of stroke completely even at a low dose that did not ameliorate severe hypertension. Neuronal damages and ND in each lacidipine-treated group were ameliorated significantly, whereas those in each nicardipine-treated group were slightly improved. Lacidipine at 1 mg/kg alone ameliorated the cerebral low-rBF significantly even at 24 hr after administration. These results suggest that a long-lasting improvement of low-rBF after stroke may be useful in the treatment of SHRSP with cerebrovascular lesions. Topics: Animals; Blood Pressure; Body Weight; Brain; Calcium Channel Blockers; Cerebellum; Cerebrovascular Disorders; Dihydropyridines; Hypertension; Kidney; Male; Nicardipine; Rats; Rats, Inbred SHR; Recurrence; Regional Blood Flow; Renal Artery; Systole | 1999 |
1,4-Dihydropyridine calcium channel blockers inhibit plasma and LDL oxidation and formation of oxidation-specific epitopes in the arterial wall and prolong survival in stroke-prone spontaneously hypertensive rats.
Calcium-channel blockers (CCBs) reduce systolic blood pressure and stroke-related mortality in stroke-prone spontaneously hypertensive rats (SPSHR). Brain ischemia is associated with loss of intracellular antioxidants. Increased formation of oxygen radicals and oxidation of LDL may enhance arterial vasoconstriction by various mechanisms. CCBs that also exert antioxidative properties in vitro may therefore be particularly useful. To investigate such antioxidant effects in vivo, we determined several parameters of LDL oxidation in SPSHR treated with two 1,4-dihydropyridine-type (1,4-DHP) CCBs of different lipophilic properties and compared them with antioxidant-treated and untreated controls. We also tested whether these drugs decrease the formation of oxidation-specific epitopes in arteries.. Five groups of 9 to 14 SPSHR each (aged 8 weeks) were treated with 80 mg/kg body wt per day nifedipine, 1 mg or 0.3 mg/kg body wt per day lacidipine, vitamin E (100 IU/d), or carrier for 5 weeks. A group of Wistar-Kyoto rats was used as normotensive control. Plasma samples were taken, and LDL was isolated by ultracentrifugation. Then LDL was exposed to oxygen radicals generated by xanthine/xanthine oxidase reaction (2 mmol/L xanthine+100 mU/mL xanthine oxidase), and several parameters of oxidation were determined. The presence of native apolipoprotein B and oxidation-specific epitopes in the carotid and middle cerebral arteries was determined immunocytochemically.. 1,4-DHP CCBs completely prevented mortality. Normotensive Wistar-Kyoto rats showed less oxidation than control SPSHR. Plasma lipoperoxide levels were 0.87+/-0.27 micromol/L in control SPSHR, 0.69+/-0.19 and 0.63+/-0.20 micromol/L in the groups treated with 0.3 and 1 mg lacidipine, respectively, and 0.68+/-0.23 micromol/L in nifedipine-treated animals (P<0.05 versus control SPSHR for all values). Both CCBs significantly decreased formation of conjugated dienes and prolonged the lag time in LDL exposed to oxygen radicals. Similarly, lipoperoxides and malondialdehyde were significantly reduced (P<0.05). Reduced relative electrophoretic mobility and increased trinitrobenzenesulfonic acid reactivity of LDL from treated rats (P<0.01) also indicated that fewer lysine residues of apolipoprotein B were oxidatively modified in the presence of 1,4-DHP CCBs. Finally, these drugs reduced the intimal presence of apolipoprotein B and oxidized LDL (oxidation-specific epitopes) in carotid and middle cerebral arteries.. In the SPSHR model, 1,4-DHP CCBs reduce plasma and LDL oxidation and formation of oxidation-specific epitopes and prolong survival independently of blood pressure modifications. Our results support the concept that the in vivo protective effect of these drugs on cerebral ischemia and stroke may in part result from inhibition of oxidative processes. Topics: Animals; Antioxidants; Apolipoproteins B; Arteries; Calcium Channel Blockers; Cerebrovascular Disorders; Dihydropyridines; Epitopes; Genetic Predisposition to Disease; Immunohistochemistry; Lipoproteins, LDL; Male; Oxidation-Reduction; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reference Values; Vitamin E | 1999 |
Prevention of salt-dependent cardiac remodeling and enhanced gene expression in stroke-prone hypertensive rats by the long-acting calcium channel blocker lacidipine.
To analyze the effect of the long-acting calcium channel blocker lacidipine on cardiovascular remodeling induced by salt loading in a genetic model of hypertension.. We examined the influence of threshold doses of lacidipine, with little blood-pressure lowering effect, on cardiac weight and gene expression in stroke-prone spontaneously hypertensive rats (SHRSP).. SHRSPs (8-week-old) were randomly allocated to four groups: control, salt-loaded SHRSP and salt-loaded SHRSP treated with lacidipine at 0.3 and 1 mg/kg per day. Systolic blood pressure was measured by the tail-cuff method. At the end of 6 weeks of treatment, ventricles were collected and weighed. Ventricular messenger RNA was extracted and subjected to Northern blot analysis.. Lacidipine (0.3 mg/kg per day) not only prevented the salt-dependent cardiac hypertrophy and the slight increase in systolic blood pressure induced by salt, but also prevented, largely or completely, salt-dependent increases in ventricular levels of several gene products: skeletal and cardiac alpha-actin, beta-myosin heavy chain (beta-MHC), type I collagen, long-lasting (L)-type calcium channel and preproendothelin-1. At a higher dose of 1 mg/kg per day, lacidipine further decreased systolic blood pressure below the level of control SHRSP, completely prevented salt-dependent overexpression of the beta-MHC gene and markedly attenuated salt-dependent overexpression of the transforming growth factor-beta1 gene.. Lacidipine prevents the cardiac remodeling and enhanced gene expression induced by salt loading in SHRSP at doses that only minimally affect the high systolic blood pressure. Topics: Animals; Blood Pressure; Calcium Channel Blockers; Cardiomegaly; Cerebrovascular Disorders; Dihydropyridines; Follow-Up Studies; Gene Expression; Hypertension; Male; Myosin Heavy Chains; Random Allocation; Rats; Rats, Inbred SHR; RNA, Messenger; Sodium Chloride; Ventricular Remodeling | 1998 |
Protective action of lacidipine in cardiac hypertrophy of the spontaneously hypertensive stroke-prone rat: an ultrastructural study.
We investigated the effect on cardiac hypertrophy of a once-daily treatment with lacidipine, at doses that do not reduce systolic blood pressure. Spontaneously hypertensive stroke-prone rats (SHR-SP) were fed a 1% NaCl enriched diet and treated daily by gastric gavage with lacidipine at doses of 0.3, 1, or 3 mg/kg/die or vehicle. At 15 weeks of age the rats were sacrificed. The heart was removed, weighed and processed for transmission electron microscopy, scanning electron microscopy and ultrastructural morphometry. Though the treatment did not reduce systolic blood pressure, heart weight and heart weight/body weight ratio were lower in the lacidipine-treated rats than in those treated with vehicle alone. Medial and subendothelial lesions were visible in coronaries of vehicle-treated SHR-SP but not in animals treated with lacidipine. In the cardiocytes of the lacidipine-treated rats, the myofibrils had a more regular arrangement and the intercalated discs did not show the irregular course and infoldings seen in the vehicle-treated rats. Morphometry showed a significantly higher density of mitochondria in the cardiocytes of lacidipine-treated SHR-SP. Scanning electron microscopy identified a decrease in the width of cardiocytes and in the number and length of lateral branches following lacidipine-treatment. The cardio-protective action of this calcium-antagonist at doses that do not reduce systolic blood pressure is attributable both to its vascular activity and to improvement in cytoplasmic organization of cardiocytes. Topics: Animals; Calcium Channel Blockers; Cardiomegaly; Cerebrovascular Disorders; Coronary Vessels; Dihydropyridines; Disease Models, Animal; Hypertension; Male; Microscopy, Electron; Microscopy, Electron, Scanning; Myocardium; Rats; Rats, Inbred SHR | 1994 |