laccase has been researched along with Mycoses* in 3 studies
3 other study(ies) available for laccase and Mycoses
Article | Year |
---|---|
Shared Physiological Traits of Exophiala Species in Cold-Blooded Vertebrates, as Opportunistic Black Yeasts.
Several species of the genus Exophiala are found as opportunistic pathogens on humans, while others cause infections in cold-blooded waterborne vertebrates. Opportunism of these fungi thus is likely to be multifactorial. Ecological traits [thermotolerance and pH tolerance, laccase activity, assimilation of mineral oil, and decolorization of Remazol Brilliant Blue R (RBBR)] were studied in a set of 40 strains of mesophilic Exophiala species focused on the salmonis-clade mainly containing waterborne species. Thermophilic species and waterborne species outside the salmonis-clade were included for comparison. Strains were able to tolerate a wide range of pHs, although optimal growth was observed between pH 4.0 and 5.5. All strains tested were laccase positive. Strains were able to grow in the presence of the compounds (mineral oil and RBBR) with some differences in assimilation patterns between strains tested and also were capable of degrading the main chromophore of RBBR. The study revealed that distantly related mesophilic species behave similarly, and no particular trend in evolutionary adaptation was observed. Topics: Animals; Anthraquinones; Exophiala; Humans; Hydrogen-Ion Concentration; Laccase; Mineral Oil; Mycoses; Opportunistic Infections; Vertebrates | 2016 |
Ethidium bromide stimulated hyper laccase production from bird's nest fungus Cyathus bulleri.
Effect of ethidium bromide, a DNA intercalating agent, on laccase production from Cyathus bulleri was studied.. The bird's nest fungus, Cyathus bulleri was grown on 2% (w/v) malt extract agar (MEA) supplemented with 1.5 microg ml(-1) of the phenanthridine dye ethidium bromide (EtBr) for 7 d and when grown subsequently in malt extract broth (MEB), produced a 4.2-fold increase in laccase production as compared to the untreated fungus. The fungal cultures following a single EtBr treatment, when regrown on MEA devoid of EtBr, produced a sixfold increase in laccase in MEB. However, on subsequent culturing on MEA in the absence of EtBr, only a 2.5-fold increase in laccase production could be maintained. In another attempt, the initial EtBr-treated cultures, when subjected to a second EtBr treatment (1.5 microg ml(-1)) on MEA for 7 d, produced a 1.4-fold increase in laccase production in MEB.. The white-rot fungus Cyathus bulleri, when treated with EtBr at a concentration of 1.5 microg ml(-1) and regrown on MEA devoid of EtBr, produced a sixfold increase in laccase production in MEB.. The variable form of C. bulleri capable of hyper laccase production can improve the economic feasibility of environmentally benign processes involving use of fungal laccases in cosmetics (including hair dyes), food and beverages, clinical diagnostics, pulp and paper industry, industrial effluent treatment, animal biotechnology and biotransformations. Topics: Animals; Basidiomycota; Ethidium; Hot Temperature; Hydrogen-Ion Concentration; Laccase; Models, Biological; Mycoses; Oxidoreductases | 2003 |
A survey of heterobasidiomycetous yeasts for the presence of the genes homologous to virulence factors of Filobasidiella neoformans, CNLAC1 and CAP59.
Among species of the heterobasidiomycetous yeasts, Filobasidiella neoformans is the only serious pathogen that causes fatal infections in both immunocompromised as well as immunocompetent patients. Three phenotypic characteristics, including growth at 37 degrees C, extracellular polysaccharide capsule and laccase activity, of F. neoformans are known to play major roles in the pathogenicity of the fungus. Several CAP genes involved in polysaccharide capsule formation, as well as the CNLAC1 gene encoding a laccase, have previously been cloned and characterized. To analyse the presence of these Cryptococcus neoformans virulence factors in other heterobasidiomycetous yeasts, numerous species of heterobasidiomycetous yeasts were screened for the presence of laccase activity and a polysaccharide capsule. Species exhibiting laccase activity and possessing a glucuronoxylomannan (GXM) capsule were screened for homologues of both the CAP59 gene and the CNLAC1 gene of F. neoformans. Southern blots of genomic DNA from GXM capsule-producing species exhibited no discernible hybridization to the CAP59 DNA sequence except for the two varieties of F. neoformans and Cryptococcus podzolicus. Although discernible, the hybridization band observed with the DNA of C. podzolicus was faint. Oligonucleotide primers constructed using the CAP59 gene sequence also failed to yield PCR products from DNAs of these yeasts except for the two varieties of F. neoformans. These results, coupled with the absence of a CAP59 homologue in the database, suggested the CAP59 gene to be unique to F. neoformans. C. podzolicus was the only species besides F. neoformans that possessed a capsule and expressed strong laccase activity on various media containing phenolic compounds. A CNLAC1 homologue was isolated from C. podzolicus while it was not detected in the species producing beige to faint tan colonies on media with phenolic compounds. Compared to the CNLAC1 sequence of four serotypes of F. neoformans, the CNLAC1 homologue of C. podzolicus showed the highest homology to that of serotype B/C strains and the lowest homology to that of serotype A strains. Topics: Basidiomycota; Cryptococcus neoformans; Culture Media; Fungal Proteins; Humans; Laccase; Melanins; Molecular Sequence Data; Mycoses; Oxidoreductases; Sequence Analysis, DNA; Sequence Homology; Virulence | 2001 |