laccase has been researched along with Body-Weight* in 2 studies
2 other study(ies) available for laccase and Body-Weight
Article | Year |
---|---|
Proteomic analysis reveals the damaging role of low redox laccase from Yersinia enterocolitica strain 8081 in the midgut of Helicoverpa armigera.
Earlier, we have found that the enteropathogenic Yersinia enterocolitica have evolved the survival mechanisms that regulate the expression of laccase-encoding genes in the gut. The present study aims to characterize the purified recombinant laccase from Y. enterocolitica strain 8081 biovar 1B and understand its effect on the midgut of cotton bollworm, Helicoverpa armigera (Hübner) larvae.. The recombinant laccase protein showed high purity fold and low molecular mass (~ 43 kDa). H. armigera larvae fed with laccase protein showed a significant decrease in body weight and damage in the midgut. Further, transmission electron microscopy (TEM) studies revealed the negative effect of laccase protein on trachea, malpighian tubules, and villi of the insect. The proteome comparison between control and laccase-fed larvae of cotton bollworm showed significant expression of proteolytic enzymes, oxidoreductases, cytoskeletal proteins, ribosomal proteins; and proteins for citrate (TCA cycle) cycle, glycolysis, stress response, cell redox homeostasis, xenobiotic degradation, and insect defence. Moreover, it also resulted in the reduction of antioxidants, increased melanization (insect innate immune response), and enhanced free radical generation.. All these data collectively suggest that H. armigera (Hübner) larvae can be used to study the effect of microbes and their metabolites on the host physiology, anatomy, and survival. Topics: Animals; Bacterial Proteins; Body Weight; Cloning, Molecular; Gastrointestinal Tract; Gene Expression Regulation, Developmental; Insect Proteins; Laccase; Larva; Lepidoptera; Microscopy, Electron, Transmission; Molecular Weight; Proteomics; Yersinia enterocolitica | 2020 |
Partial inhibition of oestrogen-induced adenohypophyseal growth by silver nitrate.
The administration of silver nitrate to rats in their food (10 mg/rat/day) led to the rapid disappearance of serum polyphenol oxidase activity. After 60 days silver nitrate treatment produced a decrease of adenohypophyseal weight. If given over a period of 40--60 days it also partially inhibited the adenohypophyseal response to oestradiol (a weight decrease and raised thyroxine binding by adenohypophyseal proteins in vitro). The mechanism by which silver nitrate diminishes basal and oestrogen-increased adenohypophyseal weight remains unknown. Topics: Animals; Body Weight; Ceruloplasmin; Estradiol; Estrogen Antagonists; Laccase; Male; Oxidoreductases; Pituitary Gland, Anterior; Rats; Silver Nitrate; Thyroxine | 1980 |