l-838-417 and Inflammation

l-838-417 has been researched along with Inflammation* in 1 studies

Other Studies

1 other study(ies) available for l-838-417 and Inflammation

ArticleYear
Reversal of pathological pain through specific spinal GABAA receptor subtypes.
    Nature, 2008, Jan-17, Volume: 451, Issue:7176

    Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology. Facilitation of spinal gamma-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABA(A) receptors should be able to compensate for this loss. With the use of GABA(A)-receptor point-mutated knock-in mice in which specific GABA(A) receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABA(A) receptors containing the alpha2 and/or alpha3 subunits. We show that their selective activation by the non-sedative ('alpha1-sparing') benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.

    Topics: Analgesics; Animals; Brain; Capsaicin; Chronic Disease; Diazepam; Disease Models, Animal; Fluorobenzenes; Formaldehyde; Ganglia, Spinal; Hot Temperature; Inflammation; Male; Mice; Neurons; Organ Specificity; Pain; Protein Isoforms; Protein Subunits; Rats; Rats, Wistar; Receptors, GABA-A; Spinal Cord; Triazoles

2008