l-750667 and Disease-Models--Animal

l-750667 has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for l-750667 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
    Science translational medicine, 2019, 07-10, Volume: 11, Issue:500

    There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch.

    Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries

2019
Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses.
    Journal of neuroimmunology, 2015, Dec-15, Volume: 289

    Berberine is an herbal alkaloid with various biological activities, including anti-inflammatory and antidepressant effects. Here, we examined the effects of berberine on dopamine receptors and the ensuing anti-inflammatory responses. Berberine was found to be an antagonist at both dopamine D1- and D2-like receptors and ameliorates the development of experimentally induced colitis in mice. In lipopolysaccharide-stimulated immune cells, berberine treatment modified cytokine levels, consistent with the effects of the dopamine receptor specific antagonists SCH23390 and L750667. Our findings indicate that dopamine receptor antagonists suppress innate and adaptive immune responses, providing a foundation for their use in combatting inflammatory diseases.

    Topics: Adaptive Immunity; Animals; Benzazepines; Berberine; Bone Marrow; Colitis; Cytokines; Dendritic Cells; Dextran Sulfate; Disease Models, Animal; Dopamine Antagonists; Immunity, Innate; Lipopolysaccharides; Lymph Nodes; Lymphocytes; Macrophages; Mice; Mice, Inbred C57BL; Protein Binding; Pyridines; Pyrroles; Receptors, Dopamine; Receptors, Serotonin; Time Factors

2015
Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis.
    Biochemical and biophysical research communications, 2008, Aug-22, Volume: 373, Issue:2

    Five types of dopamine receptors, termed D1 to D5, have been identified to date. The D1 and D5 receptors form the D1-like group that couples with the Galphas class of G proteins, while D2, D3 and D4 form the D2-like group that couples with the Galphai class of G proteins. A D2-like-receptor (D2-like-R) antagonist L750667 induced dendritic cell (DC)-mediated Th17 differentiation. In contrast, a D1-like-R antagonist SCH23390 inhibited DC-mediated Th17 differentiation. The D1-like-Rs were expressed on both DCs and T cells, whereas D2-like-Rs were marginally expressed on CD4+CD45RA+ naïve T cells. In addition, SCH23390 had the ability to prevent experimental autoimmune encephalomyelitis (EAE) in mice. Spleen cells from EAE mice showed decreased IL-17 production, when SCH23390 was administered. Adoptive transfer of DCs treated with SCH23390 successfully prevented EAE. These findings indicate that antagonizing D1-like-Rs on DCs inhibits Th17 differentiation, thereby leading to an amelioration of EAE.

    Topics: Adoptive Transfer; Animals; Benzazepines; Cell Differentiation; Cell Polarity; Dendritic Cells; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Female; Humans; Interleukin-17; Lymphocyte Activation; Mice; Pyridines; Pyrroles; Receptors, Dopamine D1; T-Lymphocytes, Helper-Inducer

2008