l-735821 has been researched along with Long-QT-Syndrome* in 2 studies
2 other study(ies) available for l-735821 and Long-QT-Syndrome
Article | Year |
---|---|
Pharmacological block of the slow component of the outward delayed rectifier current (I(Ks)) fails to lengthen rabbit ventricular muscle QT(c) and action potential duration.
1. The effects of I(Ks) block by chromanol 293B and L-735,821 on rabbit QT-interval, action potential duration (APD), and membrane current were compared to those of E-4031, a recognized I(Kr) blocker. Measurements were made in rabbit Langendorff-perfused whole hearts, isolated papillary muscle, and single isolated ventricular myocytes. 2. Neither chromanol 293B (10 microM) nor L-735,821 (100 nM) had a significant effect on QTc interval in Langendorff-perfused hearts. E-4031 (100 nM), on the other hand, significantly increased QTc interval (35.6+/-3.9%, n=8, P<0.05). 3. Similarly both chromanol 293B (10 microM) and L-735,821 (100 nM) produced little increase in papillary muscle APD (less than 7%) while pacing at cycle lengths between 300 and 5000 ms. In contrast, E-4031 (100 nM) markedly increased (30 - 60%) APD in a reverse frequency-dependent manner. 4. In ventricular myocytes, the same concentrations of chromanol 293B (10 microM), L-735,821 (100 nM) and E-4031 (1 microM) markedly or totally blocked I(Ks) and I(Kr), respectively. 5. I(Ks) tail currents activated slowly (at +30 mV, tau=888.1+/-48.2 ms, n=21) and deactivated rapidly (at -40 mV, tau=157.1+/-4.7 ms, n=22), while I(Kr) tail currents activated rapidly (at +30 mV, tau=35.5+/-3.1 ms, n=26) and deactivated slowly (at -40 mV, tau(1)=641.5+/-29.0 ms, tau(2)=6531+/-343, n=35). I(Kr) was estimated to contribute substantially more to total current density during normal ventricular muscle action potentials (i.e., after a 150 ms square pulse to +30 mV) than does I(Ks). 6. These findings indicate that block of I(Ks) is not likely to provide antiarrhythmic benefit by lengthening normal ventricular muscle QTc, APD, and refractoriness over a wide range of frequencies. Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Benzodiazepines; Cell Separation; Chromans; Colforsin; Electrocardiography; Female; Heart; Heart Ventricles; In Vitro Techniques; Kinetics; Long QT Syndrome; Male; Microelectrodes; Myocardium; Papillary Muscles; Patch-Clamp Techniques; Piperidines; Potassium Channel Blockers; Pyridines; Rabbits; Sulfonamides | 2001 |
The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes.
The purpose of this study was to investigate the properties of the slow component of the delayed rectifier potassium current (I(Ks)) in myocytes isolated from undiseased human left ventricles.. The whole-cell configuration of the patch-clamp technique was applied in 58 left ventricular myocytes from 15 hearts at 37 degrees C. Nisoldipine (1 microM) was used to block inward calcium current (I(Ca)) and E-4031 (1-5 microM) was applied to inhibit the rapid component of the delayed rectifier potassium current (I(Kr)).. In 31 myocytes, an E-4031 insensitive, but L-735,821 and chromanol 293B sensitive, tail current was identified which was attributed to the slow component of I(K) (I(Ks)). Activation of I(Ks) was slow (tau=903+/-101 ms at 50 mV, n=14), but deactivation of the current was relatively rapid (tau=122.4+/-11.7 ms at -40 mV, n=19). The activation of I(Ks) was voltage independent but its deactivation showed clear voltage dependence. The deactivation was faster at negative voltages (about 100 ms at -50 mV) and slower at depolarized potentials (about 300 ms at 0 mV). In six cells, the reversal potential was -81.6+/-2.8 mV on an average which is close to the K(+) equilibrium potential suggesting K(+) as the main charge carrier.. In undiseased human ventricular myocytes, I(Ks) exhibits slow activation and fast deactivation kinetics. Therefore, in humans I(Ks) differs from that reported in guinea pig, and it best resembles I(Ks) described in dog and rabbit ventricular myocytes. Topics: Adult; Benzodiazepines; Calcium Channel Blockers; Cell Separation; Chromans; Colforsin; Female; Humans; Ion Channel Gating; Long QT Syndrome; Male; Myocardium; Nisoldipine; Patch-Clamp Techniques; Piperidines; Potassium Channels; Pyridines; Sulfonamides | 2001 |