l-701324 has been researched along with Disease-Models--Animal* in 14 studies
14 other study(ies) available for l-701324 and Disease-Models--Animal
Article | Year |
---|---|
Antidepressant-like activity of L-701324 in mice: A behavioral and neurobiological characterization.
Antidepressants currently used in clinical practice have limitations such as low efficacy, slow onset and various adverse reactions. It has become necessary to develop novel antidepressants beyond monoaminergic drugs. L-701,324 is a potent NMDA receptor antagonist, and the purpose of this study was to investigate the possible antidepressant effects of L-701,324 in mice. Here, various methods including the forced swim test (FST), tail suspension test (TST), chronic unpredictable mild stress (CUMS) model of depression, western blotting and immunofluorescence, were used together. A single injection of L-701,324 exhibited antidepressant-like potential in the FST and TST without affecting the locomotor activity of mice. Repeated injection of L-701,324 not only prevented CUMS-induced depressive-like behaviors in mice, but also ameliorated the downregulating effects of CUMS on the hippocampal BDNF signaling cascade and neurogenesis. Furthermore, K252a, a potent inhibitor of the BDNF system, fully blocked the antidepressant-like activity of L-701,324 in mice. K252a administration also abolished the activating actions of L-701,324 on the hippocampal BDNF signaling cascade and neurogenesis in CUMS-treated mice. Collectively, these data indicated that L-701,324 possesses antidepressant-like activity in mice, which was mediated, at least in part, by promoting the hippocampal BDNF system. Topics: Animals; Antidepressive Agents; Behavior, Animal; Brain-Derived Neurotrophic Factor; Depression; Disease Models, Animal; Excitatory Amino Acid Antagonists; Hippocampus; Male; Mice; Mice, Inbred C57BL; Neurogenesis; Quinolones; Receptors, N-Methyl-D-Aspartate; Signal Transduction; Stress, Psychological | 2021 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Dysregulated Glycine Signaling Contributes to Increased Impulsivity during Protracted Alcohol Abstinence.
Persons with alcoholism who are abstinent exhibit persistent impairments in the capacity for response inhibition, and this form of impulsivity is significantly associated with heightened relapse risk. Brain-imaging studies implicate aberrant prefrontal cortical function in this behavioral pathology, although the underlying mechanisms are not understood. Here we present evidence that deficient activation of glycine and serine release in the ventral medial prefrontal cortex (vmPFC) contributes to increased motor impulsivity during protracted abstinence from long-term alcohol exposure. Levels of 12 neurotransmitters were monitored in the rat vmPFC during the performance of a challenging variant of the five-choice serial reaction time task (5-CSRTT) in which alcohol-exposed rats exhibit excessive premature responding. Following long-term ethanol exposure, rats showed blunted task-related recruitment of vmPFC glycine and serine release, and the loss of an inverse relationship between levels of these neurotransmitters and premature responding normally evident in alcohol-naive subjects. Intra-vmPFC administration of the glycine transport inhibitor ALX5407 prevented excessive premature responding by alcohol-exposed rats, and this was reliant on NMDA glycine site availability. Alcohol-exposed rats and controls did not differ in their premature responding and glycine and serine levels in vmPFC during the performance of the standard 5-CSRTT. Collectively, these findings provide novel insight into cortical neurochemical mechanisms contributing to increased impulsivity following long-term alcohol exposure and highlight the NMDA receptor coagonist site as a potential therapeutic target for increased impulsivity that may contribute to relapse risk. Topics: Alcohol Abstinence; Alcohol Drinking; Animals; Central Nervous System Depressants; Choice Behavior; Disease Models, Animal; Ethanol; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 2; Glycine; Impulsive Behavior; Male; Neurotransmitter Agents; Photic Stimulation; Quinolones; Rats; Rats, Wistar; Reaction Time; Sarcosine; Serine; Signal Transduction | 2017 |
Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701,324 improves pharmacosensitivity in a mouse kindling model.
The glycine co-agonist binding site of the N-methyl-D-aspartat (NMDA) receptor is discussed as an interesting target for different central nervous system diseases. Antagonism at this co-agonist site has been suggested as an alternative to the use of non-competitive or competitive NMDA receptor antagonists, which are associated with a pronounced adverse effect profile in chronic epilepsy models and epilepsy patients. In the present study, we addressed the hypothesis that sub-chronic administration of the glycine-binding site antagonist L-701,324 might exert disease-modifying effects in fully kindled mice during a period with frequent seizure elicitation (massive kindling). Moreover, we analyzed whether L-701,324 exposure during this phase affects the subsequent response to an antiepileptic drug. L-701,324 treatment during the massive kindling phase did not affect ictogenesis. Mean seizure severity and cumulative seizure duration proved to be comparable between vehicle- and L-701,324-treated mice. Following withdrawal of L-701,324 seizure thresholds did not differ in a significant manner from those in animals that received vehicle injections. A low dosage of phenobarbital caused a significant increase of the generalized seizure threshold in the L-701,324 pre-treated group, whereas it did not exert a comparable effect in animals that received vehicle during the massive kindling phase. Analysis of P-glycoprotein in the hilus of the hippocampus revealed lower expression rates in L-701,324 pre-treated kindled mice. In conclusion, the data indicate that targeting of the NMDA receptor glycine-binding site does not result in anticonvulsant or disease-modifying effects. However, it might improve antiepileptic drug responses. The findings might be linked to an impact on P-glycoprotein expression. However, future studies are necessary to further evaluate the mechanisms and assess the potential of respective add-on approaches. Topics: Animals; Anticonvulsants; ATP Binding Cassette Transporter, Subfamily B, Member 1; Behavior, Animal; Brain; Disease Models, Animal; Drug Interactions; Excitatory Amino Acid Antagonists; Kindling, Neurologic; Male; Mice; Phenobarbital; Quinolones; Seizures | 2014 |
NMDA receptor activation antagonizes the NMDA antagonist-induced antianxiety effect in the elevated plus-maze test in mice.
The purpose of this study was to determine how the activation of different regulatory domains of the NMDA complex affects the antianxiety effect of antagonists acting at its distinct binding sites.. The anxiolytic-like activity was assessed by the elevated plus-maze test in mice.. The anxiolytic activity of CGP 37849 (a competitive NMDA receptor antagonist) and L-701,324 (an antagonist at glycine site) was confirmed, but effects of both were significantly reduced by N-methyl-D-aspartic acid (NMDA) or by D-serine agonists at glutamate and glycine site of the NMDA receptor complex, respectively.. The obtained data suggest that stimulation of the glutamate or glycine recognition site of the NMDA receptor complex significantly decreases the antianxiety properties of antagonists of either site. Topics: 2-Amino-5-phosphonovalerate; Animals; Anti-Anxiety Agents; Anxiety; Behavior, Animal; Binding Sites; Brain; Disease Models, Animal; Drug Interactions; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Ligands; Male; Maze Learning; Mice; N-Methylaspartate; Quinolones; Receptors, N-Methyl-D-Aspartate; Serine | 2013 |
Probing the modulation of acute ethanol intoxication by pharmacological manipulation of the NMDAR glycine co-agonist site.
Stimulating the glycine(B) binding site on the N-methyl-d-aspartate ionotropic glutamate receptor (NMDAR) has been proposed as a novel mechanism for modulating behavioral effects of ethanol (EtOH) that are mediated via the NMDAR, including acute intoxication. Here, we pharmacologically interrogated this hypothesis in mice.. Effects of systemic injection of the glycine(B) agonist, d-serine, the GlyT-1 glycine transporter inhibitor, ALX-5407, and the glycine(B) antagonist, L-701,324, were tested for the effects on EtOH-induced ataxia, hypothermia, and loss of righting reflex (LORR) duration in C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mice. Effects of the glycine(B) partial agonist, d-cycloserine (DCS), the GlyT-1 inhibitor, N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS), and the glycine(B) antagonist, 5,7-dichlorokynurenic (DCKA), on EtOH-induced LORR duration were also tested. Interaction effects on EtOH-induced LORR duration were examined via combined treatment with d-serine and ALX-5407, d-serine and MK-801, d-serine and L-701,324, as well as L-701,324 and ALX-5407, in B6 mice, and d-serine in GluN2A and PSD-95 knockout mice. The effect of dietary depletion of magnesium (Mg), an element that interacts with the glycine(B) site, was also tested.. Neither d-serine, DCS, ALX-5407, nor NFPS significantly affected EtOH intoxication on any of the measures or strains studied. L-701,324, but not DCKA, dose-dependently potentiated the ataxia-inducing effects of EtOH and increased EtOH-induced (but not pentobarbital-induced) LORR duration. d-serine did not have interactive effects on EtOH-induced LORR duration when combined with ALX-5407. The EtOH-potentiating effects of L-701,324, but not MK-801, on LORR duration were prevented by d-serine, but not ALX-5407. Mg depletion potentiated LORR duration in B6 mice and was lethal in a large proportion of S1 mice.. Glycine(B) site activation failed to produce the hypothesized reduction in EtOH intoxication across a range of measures and genetic strains, but blockade of the glycine(B) site potentiated EtOH intoxication. These data suggest endogenous activity at the glycine(B) opposes EtOH intoxication, but it may be difficult to pharmacologically augment this action, at least in nondependent subjects, perhaps because of physiological saturation of the glycine(B) site. Topics: Alcoholic Intoxication; Animals; Ataxia; Cycloserine; Disease Models, Animal; Disks Large Homolog 4 Protein; Dizocilpine Maleate; Drug Therapy, Combination; Glycine Plasma Membrane Transport Proteins; Guanylate Kinases; Hypothermia; Kynurenic Acid; Magnesium; Male; Membrane Proteins; Mice; Mice, 129 Strain; Mice, Inbred C57BL; Mice, Knockout; Quinolones; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Reflex, Righting; Sarcosine; Serine | 2013 |
Cannabinoid-induced increase in relapse-like drinking is prevented by the blockade of the glycine-binding site of N-methyl-D-aspartate receptors.
The endocannabinoid system is a neuromodulatory system which controls the release of multiple neurotransmitters, including glutamate and both, the endocannabinoid and glutamatergic systems, have been implicated in alcohol relapse. Cannabinoid agonists induce an increase in relapse-like drinking whereas glutamate receptor antagonists could prevent it. Here we hypothesize that cannabinoid-induced increases in relapse-like alcohol drinking could be mediated by glutamatergic N-methyl-d-aspartate (NMDA) receptors. To test this hypothesis, Wistar rats with a background of alcohol operant self-administration were treated with the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl), pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN 55.212-2, WIN) (2.0 mg/kg) during periods of alcohol deprivation. For five consecutive days, 30 min before the reintroduction of alcohol, rats were injected with the NMDA/glycine receptor antagonist 7-chloro-4-hydroxy-3-(3-phenoxy)phenylquinolin-2-[1H]-one (L-701) (1.25-5.0 mg/kg) and alcohol reinforcement was evaluated. Our results clearly show that L-701 prevented the cannabinoid-induced increase in relapse-like drinking in a dose-dependent manner, whereas L-701 alone, in the absence of WIN treatment, did not significantly alter alcohol intake. The potentiation of relapse-like drinking induced by WIN is not caused by nonspecific anxiogenic effects, since no effect was observed in the elevated-plus maze test. These alcohol-related behaviors are linked to differential changes in CNR1 and NR1 subunit mRNA transcripts. In WIN-treated rats, an increase in CNR1 transcript levels was observed in the hypothalamus and striatum, whereas in the amygdala and anterior cingulate cortex, brain regions involved in emotional processing, a decrease was observed. Interestingly, such changes were blocked after L-701 treatment. Finally, WIN treatment also caused a reduction in NR1 mRNA levels in the amygdala. In conclusion, pharmacological inactivation of the glycine-binding site of NMDA receptors may control cannabinoid-induced relapse-like drinking, which is associated with altered expression of CNR1 and NR1 gene expression as observed after WIN treatment. Topics: Alcohol Drinking; Alcoholism; Animals; Benzoxazines; Binding Sites; Cannabinoids; Conditioning, Operant; Disease Models, Animal; Dose-Response Relationship, Drug; Ethanol; Excitatory Amino Acid Antagonists; Glycine; Male; Maze Learning; Morpholines; Naphthalenes; Quinolones; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptors, N-Methyl-D-Aspartate; Self Administration; Substance Withdrawal Syndrome | 2009 |
Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia.
Schizophrenic patients demonstrate prominent negative and cognitive symptoms that are poorly responsive to antipsychotic treatment. Abnormal glutamatergic neurotransmission may contribute to these pathophysiological dimensions of schizophrenia.. We examined the involvement of the glycine coagonist site on the N-methyl-D: -aspartate receptor (NMDAR) glycine coagonist site in the modulation of negative and cognitive endophenotypes in mice.. Behavioral phenotypes relevant to schizophrenia were assessed in Grin1(D481N) mice that have reduced NMDAR glycine affinity.. Grin1(D481N) mutant mice showed abnormally persistent latent inhibition (LI) that was reversed by two agents that enhance NMDAR glycine site function, D: -serine (600 mg/kg) and ALX-5407 (1 mg/kg), and by the classical atypical antipsychotic clozapine (3 mg/kg). Similarly, blockade of the NMDAR glycine site with the antagonist L-701,324 (5 mg/kg) induced persistent LI in C57BL6/J mice. In a social affiliations task, Grin1(D481N) mutant animals showed reduced social approach behaviors that were normalized by D: -serine (600 mg/kg). During a nonassociative spatial object recognition task, mutant mice demonstrated impaired reactivity to a spatial change that was reversible by D: -serine (300 and 600 mg/kg) and clozapine (0.75 mg/kg). In contrast, responses to social novelty and nonspatial change remained unaffected, indicating that the Grin1(D481N) mutation induces selective deficits in sociability and spatial discrimination, while leaving intact the ability to react to novelty.. Genetic and pharmacologically induced deficiencies in glycine binding appear to model the impairments in behavioral flexibility, sociability, and spatial recognition related to the negative and cognitive symptoms of schizophrenia. Antipsychotics that target the NMDAR glycine site may be beneficial in treating such psychiatric symptoms. Topics: Animals; Behavior, Animal; Carrier Proteins; Clozapine; Disease Models, Animal; Glycine; Male; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Nerve Tissue Proteins; Phenotype; Quinolones; Receptors, N-Methyl-D-Aspartate; Recognition, Psychology; Sarcosine; Schizophrenia; Schizophrenic Psychology; Serine; Social Behavior; Space Perception | 2008 |
Model mice for mild-form glycine encephalopathy: behavioral and biochemical characterizations and efficacy of antagonists for the glycine binding site of N-methyl D-aspartate receptor.
Glycine encephalopathy (GE) is caused by an inherited deficiency of the glycine cleavage system (GCS) and characterized by accumulation of glycine in body fluids and various neurologic symptoms. Coma and convulsions develop in neonates in typical GE while psychomotor retardation and behavioral abnormalities in infancy and childhood are observed in mild GE. Recently, we have established a transgenic mouse line (low-GCS) with reduced GCS activity (29% of wild-type (WT) C57BL/6) and accumulation of glycine in the brain (Stroke, 2007; 38:2157). The purpose of the present study is to characterize behavioral features of the low-GCS mouse as a model of mild GE. Two other transgenic mouse lines were also analyzed: high-GCS mice with elevated GCS activity and low-GCS-2 mice with reduced GCS activity. As compared with controls, low-GCS mice manifested increased seizure susceptibility, aggressiveness and anxiety-like activity, which resembled abnormal behaviors reported in mild GE, whereas high-GCS mice were less sensitive to seizures, hypoactive and less anxious. Antagonists for the glycine-binding site of the N-methyl-D-aspartate receptor significantly ameliorated elevated locomotor activity and seizure susceptibility in the low-GCS mice. Our results suggest the usefulness of low-GCS mice as a mouse model for mild GE and a novel therapeutic strategy. Topics: Aggression; Amino Acid Oxidoreductases; Animals; Anxiety; Binding Sites; Brain Diseases, Metabolic; Carrier Proteins; Disease Models, Animal; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glycine; Mice; Mice, Inbred C57BL; Mice, Transgenic; Motor Activity; Multienzyme Complexes; Pyrrolidinones; Quinolones; Receptors, N-Methyl-D-Aspartate; Seizures; Transferases | 2008 |
Behavioral and biochemical characterization of a mutant mouse strain lacking D-amino acid oxidase activity and its implications for schizophrenia.
D-amino acid oxidase (DAO) degrades D-serine, a co-agonist at the NMDA receptor (NMDAR). Hypofunction of the NMDAR has been suggested to contribute to the pathophysiology of schizophrenia. Intriguingly, DAO has been recently identified as a risk factor for schizophrenia through genetic association studies. A naturally occurring mouse strain (ddY/DAO-) has been identified which lacks DAO activity. We have characterized this strain both behaviorally and biochemically to evaluate DAO as a target for schizophrenia. We have confirmed that this strain lacks DAO activity and shown for the first time it has increased occupancy of the NMDAR glycine site due to elevated extracellular D-serine levels and has enhanced NMDAR function in vivo. Furthermore, the ddY/DAO- strain displays behaviors which suggest that it will be a useful tool for evaluation of the clinical benefit of DAO inhibition in schizophrenia. Topics: Acoustic Stimulation; Animals; Brain Chemistry; Cyclic GMP; D-Amino-Acid Oxidase; Disease Models, Animal; Dose-Response Relationship, Radiation; Excitatory Amino Acid Antagonists; Extremities; Female; Male; Mice; Mice, Inbred Strains; Mice, Knockout; Motor Activity; Neural Inhibition; Neurologic Examination; Phencyclidine; Psychomotor Performance; Quinolones; Reaction Time; Reflex, Startle; Schizophrenia; Sex Factors; Swimming | 2006 |
Antiallodynic effects of NMDA glycine(B) antagonists in neuropathic pain: possible peripheral mechanisms.
NMDA receptors are implicated in central sensitisation underlying chronic pain, and NMDA antagonists have a potential for the treatment of neuropathic pain. Functional NMDA receptors are also present on primary afferents, where they may play a role in pro-nociceptive plasticity. The importance of this mechanism in neuropathic pain remains unclear. In the present work, we have compared in models of chronic pain the effects of NMDA antagonists at the glycine(B) site with different central access. L-701,324 (the centrally active antagonist) and 5,7-dichlorokynurenic acid (5,7-DCK, known to have limited central access) were tested after systemic administration in rats in the formalin test and in two models of neuropathic pain. The ability of these compounds to exert central actions (sedation, ataxia) was tested in the open field locomotion test; central NMDA antagonism in vivo was tested in anaesthetised rats on responses of spinal cord neurones to iontophoretic NMDA. Both L-701,324 (2.15-21.5 mg/kg i.p.) and 5,7-DCK (10-46.4 mg/kg i.v.) dose-dependently inhibited Phase II of formalin-evoked behaviour. Likewise, both compounds reversed cold allodynia in the chronic constriction injury model and tactile allodynia in animals with spinal nerve ligation. However, only L-701,324 was able to inhibit neuronal responses to NMDA in the antihyperalgesic dose range; 5,7-DCK was inactive on NMDA responses up to 46.4 mg/kg i.v. or 68.1 mg/kg i.p. Consistent with the lack of inhibition of central NMDA-evoked activity, 5,7-DCK did not alter spontaneous behaviour in the open field test, whereas it was significantly inhibited by L-701,324. Thus, peripheral NMDA receptors may substantially contribute to the efficacy of NMDA antagonists in neuropathic pain. Topics: Action Potentials; Animals; Constriction, Pathologic; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Kynurenic Acid; Ligation; Male; N-Methylaspartate; Neuralgia; Neurons, Afferent; Pain Measurement; Quinolones; Rats; Rats, Sprague-Dawley; Spinal Cord; Spinal Nerves; Time Factors | 2005 |
NMDA receptor antagonists acting at the glycineB site in rat models for antipsychotic-like activity.
Several partial agonist and full antagonists acting at the glycine site of the NMDA receptors were tested for potential antipsychotic-like properties in rats. As models, amphetamine- and phencyclidine (PCP)-induced locomotor activation in the open field and PCP-induced impairment of prepulse inhibition of the acoustic startle response were employed. In the open field test, partial agonists, D-cycloserine failed to show any effect, aminocyclopropane carboxylic acid (ACPC) enhanced the action of PCP (but not that of amphetamine) and R(+)HA-966 attenuated the locomotor activation produced by both amphetamine and PCP. Both full glycineB antagonists, L-701,324 and MRZ 2/576 attenuated the action of amphetamine and PCP but at the doses that also produce transient behavioural inhibition in naive animals. A competitive NMDA receptor antagonist CGP 39551 was ineffective. In the prepulse inhibition test neither L-701,324 nor MRZ 2/576 changed sensorimotor gating in naive animals nor attenuated the disrupting effects of PCP. The present data do not support antipsychotic profile of glycineB full antagonists. However, psychotomimetic potential of glycineB antagonists seems to be low. Topics: 2-Amino-5-phosphonovalerate; Amphetamine; Animals; Antimetabolites; Antipsychotic Agents; Binding Sites; Cycloleucine; Cycloserine; Disease Models, Animal; Dopamine Agents; Drug Synergism; Excitatory Amino Acid Antagonists; Glycine; Hallucinogens; Locomotion; Male; Phencyclidine; Phthalazines; Protein Structure, Tertiary; Psychotic Disorders; Pyrrolidinones; Quinolones; Rats; Rats, Sprague-Dawley; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Reflex, Startle | 1999 |
LU 73068, a new non-NMDA and glycine/NMDA receptor antagonist: pharmacological characterization and comparison with NBQX and L-701,324 in the kindling model of epilepsy.
The aim of this study was to assess whether a drug which combines an antagonistic action at both NMDA and non-NMDA receptors offers advantages for treatment of epileptic seizures compared to drugs which antagonize only one of these ionotropic glutamate receptors. The novel glutamate receptor antagonist LU 73068 (4,5-dihydro-1-methyl-4-oxo-7-trifluoromethylimidazo[1,2a]quinoxal ine-2-carbonic acid) binds with high affinity to both the glycine site of the NMDA receptor (Ki 185 nM) and to the AMPA receptor (Ki 158 nM). Furthermore, binding experiments with recombinant kainate receptor subunits showed that LU 73068 binds to several of these subunits, particularly to rGluR7 (Ki 104 nM) and rGluR5 (Ki 271 nM). In comparison, the prototype non-NMDA receptor antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline) binds with high affinity to AMPA receptors only. Both NBQX and LU 73068 were about equieffective after i.p. injection in mice to block lethal convulsions induced by AMPA or NMDA. In the rat amygdala kindling model of temporal lobe epilepsy, LU 73068 dose-dependently increased the focal seizure threshold (afterdischarge threshold, ADT). When rats were stimulated with a current 20% above the individual control ADT, LU 73068 completely blocked seizures with an ED50 of 4.9 mg kg(-1). Up to 20 mg kg(-1), only moderate adverse effects, e.g. slight ataxia, were observed. NBQX, 10 mg kg(-1), and the glycine/NMDA site antagonist L-701,324 (7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-quinoline-2(1H)one), 2.5 or 5 mg kg(-1), exerted no anticonvulsant effects in kindled rats when administered alone, but combined treatment with both drugs resulted in a significant ADT increase. The data indicate that combination of glycine/NMDA and non-NMDA receptor antagonism in a single drug is an effective means of developing a potent and effective anticonvulsant agent. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anticonvulsants; Disease Models, Animal; Dizocilpine Maleate; Drug Synergism; Epilepsy; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Imidazoles; Kindling, Neurologic; Male; Mice; Mice, Inbred Strains; N-Methylaspartate; Quinolones; Quinoxalines; Receptors, AMPA; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Tritium | 1998 |
The role of striatal glutamate receptors in models of Parkinson's disease.
The aim of the study was to examine the effect of antagonists of the NMDA receptor on the parkinsonian-like muscle rigidity in rats. Reserpine and haloperidol increased the muscle resistance of the hind foot to passive movements, as well as the reflex electromyographic (EMG) activity in the gastroenemius and tibialis anterior muscles. MK-801 (0.32-1.28 mg/kg s.c.), an uncompetitive antagonist of the NMDA receptor, and L-701,324 (5-40 mg/kg i.p.), an antagonist of the glycine site, reduced the muscle tone and the reflex EMG activity enhanced by reserpine or haloperidol. AP-5 (2 and 5 micrograms/0.5 microliter), a competitive antagonist of the NMDA receptor, and 5,7-dichlorokynurenic acid (1.0-4.5 micrograms/0.5 microliter), the glycine site antagonist injected bilaterally into the rostral striatum, inhibited the muscle rigidity induced by haloperidol. In contrast, AP-5, injected alone bilaterally into the intermediate-caudal striatum induced muscle rigidity. The present results suggest that: (1) the inhibitory effect of the NMDA receptor antagonists on the parkinsonian-like muscle rigidity depends, at least partly, on their action on the rostral striatum; (2) the blockade of NMDA receptors in the intermediate-caudal striatum may reduce the beneficial impact of these compounds. Topics: Animals; Corpus Striatum; Disease Models, Animal; Dizocilpine Maleate; Electromyography; Excitatory Amino Acid Antagonists; Haloperidol; Kynurenic Acid; Parkinson Disease; Quinolones; Rats; Receptors, N-Methyl-D-Aspartate; Reserpine | 1998 |