l-685458 and Brain-Neoplasms

l-685458 has been researched along with Brain-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for l-685458 and Brain-Neoplasms

ArticleYear
The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets.
    Oncotarget, 2017, Mar-14, Volume: 8, Issue:11

    The invasive and lethal nature of Glioblastoma multiforme (GBM) necessitates the continuous identification of molecular targets and search of efficacious therapies to inhibit GBM growth. The GBM resistance to chemotherapy and radiation it is attributed to the existence of a rare fraction of cancer stem cells (CSC) that we have identified within the tumor core and in peritumor tissue of GBM. Since Notch1 pathway is a potential therapeutic target in brain cancer, earlier we highlighted that pharmacological inhibition of Notch1 signalling by γ-secretase inhibitor-X (GSI-X), reduced cell growth of some c-CSC than to their respective p-CSC, but produced negligible effects on cell cycle distribution, apoptosis and cell invasion. In the current study, we assessed the effects of Hes1-targeted shRNA, a Notch1 gene target, specifically on GBM CSC refractory to GSI-X. Depletion of Hes1 protein induces major changes in cell morphology, cell growth rate and in the invasive ability of shHes1-CSC in response to growth factor EGF. shHes1-CSC show a decrease of the stemness marker Nestin concurrently to a marked increase of neuronal marker MAP2 compared to pLKO.1-CSC. Those effects correlated with repression of EGFR protein and modulation of Stat3 phosphorylation at Y705 and S727 residues. In the last decade Stat3 has gained attention as therapeutic target in cancer but there is not yet any approved Stat3-based glioma therapy. Herein, we report that exposure to a Stat3/5 inhibitor, induced apoptosis either in shHes1-CSC or control cells. Taken together, Hes1 seems to be a favorable target but not sufficient itself to target GBM efficaciously, therefore a possible pharmacological intervention should provide for the use of anti-Stat3/5 drugs either alone or in combination regimen.

    Topics: Apoptosis; Benzimidazoles; Brain Neoplasms; Carbamates; Cell Differentiation; Cell Proliferation; Dipeptides; ErbB Receptors; Glioblastoma; Humans; Microtubule-Associated Proteins; Neoplasm Invasiveness; Neoplastic Stem Cells; Phosphorylation; Piperidines; Receptor, Notch1; RNA Interference; RNA, Small Interfering; Signal Transduction; STAT3 Transcription Factor; STAT5 Transcription Factor; Transcription Factor HES-1; Tumor Suppressor Proteins

2017
γ-Secretase inhibitor I inhibits neuroblastoma cells, with NOTCH and the proteasome among its targets.
    Oncotarget, 2016, 09-27, Volume: 7, Issue:39

    As high-risk neuroblastoma (NB) has a poor prognosis, new therapeutic modalities are needed. We therefore investigated the susceptibility of NB cells to γ-secretase inhibitor I (GSI-I). NOTCH signaling activity, the cellular effects of GSI-I and its mechanisms of cytotoxicity were evaluated in NB cells in vitro and in vivo. The results show that NOTCH signaling is relevant for human NB cells. Of the GSIs screened in vitro GSI-I was the most effective inhibitor of NB cells. Both MYCN-amplified and non-amplified NB cells were susceptible to GSI-I. Among the targets of GSI-I in NB cells were NOTCH and the proteasome. GSI-I caused G2/M arrest that was enhanced by acute activation of MYCN and led to mitotic dysfunction. GSI-I also induced proapoptotic NOXA. Survival of mice bearing an MYCN non-amplified orthotopic patient-derived NB xenograft was significantly prolonged by systemic GSI-I, associated with mitotic catastrophe and reduced angiogenesis, and without evidence of intestinal toxicity. In conclusion, the activity of GSI-I on multiple targets in NB cells and the lack of gastrointestinal toxicity in mice are advantageous and merit further investigations of GSI-I in NB.

    Topics: Amyloid Precursor Protein Secretases; Animals; Apoptosis; Brain Neoplasms; Carbamates; Cell Cycle; Cell Line, Tumor; Dipeptides; Enzyme Inhibitors; Female; Humans; In Situ Hybridization, Fluorescence; Mice; Mitosis; N-Myc Proto-Oncogene Protein; Neoplasm Transplantation; Neovascularization, Pathologic; Neuroblastoma; Oligopeptides; Proteasome Endopeptidase Complex; Receptor, Notch1; Receptors, Notch; Signal Transduction

2016