l-663536 has been researched along with Disease-Models--Animal* in 30 studies
30 other study(ies) available for l-663536 and Disease-Models--Animal
Article | Year |
---|---|
Hederagenin improves Alzheimer's disease through PPARα/TFEB-mediated autophagy.
Autophagic flux is coordinated by a network of master regulatory genes, which centered on transcription factor EB (TFEB). The disorders of autophagic flux are closely associated with Alzheimer's disease (AD), and thus restoring autophagic flux to degrade pathogenic proteins has become a hot therapeutic strategy. Hederagenin (HD), a triterpene compound, isolated from a variety food such as Matoa (Pometia pinnata) Fruit, Medicago sativa, Medicago polymorpha L. Previous studies have shown that HD has the neuroprotective effect. However, the effect of HD on AD and underlying mechanisms are unclear.. To determine the effect of HD on AD and whether it promotes autophagy to reduce AD symptoms.. BV2 cells, C. elegans and APP/PS1 transgenic mice were used to explore the alleviative effect of HD on AD and the molecular mechanism in vivo and in vitro.. The APP/PS1 transgenic mice at 10 months were randomized into 5 groups (n = 10 in each group) and orally administrated with either vehicle (0.5% CMCNa), WY14643 (10 mg/kg/d), low-dose of HD (25 mg/kg/d), high-dose of HD (50 mg/kg/d) or MK-886 (10 mg/kg/d) + HD (50 mg/kg/d) for consecutive 2 months. The behavioral experiments including morris water maze test, object recognition test and Y maze test were performed. The effects of HD on Aβ deposition and alleviates Aβ pathology in transgenic C. elegans were operated using paralysis assay and fluorescence staining assay. The roles of HD in promoting PPARα/TFEB-dependent autophagy were investigated using the BV2 cells via western blot analysis, real-time quantitative PCR (RT-qPCR), molecular docking, molecular dynamic (MD) simulation, electron microscope assay and immunofluorescence.. In this study, we found that HD upregulated mRNA and protein level of TFEB and increased the distribution of TFEB in the nucleus, and the expressions of its target genes. HD also promoted the expressions of LC3BII/LC3BI, LAMP2, etc., and promoted autophagy and the degradation of Aβ. HD reduced Aβ deposition in the head area of C. elegans and Aβ-induced paralysis. HD improved cognitive impairment and pathological changes in APP/PS1 mice by promoting autophagy and activating TFEB. And our results also showed that HD could strongly target PPARα. More importantly, these effects were reversed by treatment of MK-886, a selective PPARα antagonist.. Our present findings demonstrated that HD attenuated the pathology of AD through inducing autophagy and the underlying mechanism associated with PPARα/TFEB pathway. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Autophagy; Caenorhabditis elegans; Disease Models, Animal; Mice; Mice, Transgenic; Molecular Docking Simulation; PPAR alpha | 2023 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Leukotriene B4 promotes neovascularization and macrophage recruitment in murine wet-type AMD models.
Age-related macular degeneration (AMD), a progressive chronic disease of the central retina, is associated with aging and is a leading cause of blindness worldwide. Here, we demonstrate that leukotriene B4 (LTB4) receptor 1 (BLT1) promotes laser-induced choroidal neovascularization (CNV) in a mouse model for wet-type AMD. CNV was significantly less in BLT1-deficient (BLT1-KO) mice compared with BLT1-WT controls. Expression of several proangiogenic and profibrotic factors was lower in BLT1-KO eyes than in BLT1-WT eyes. LTB4 production in the eyes was substantially increased in the early phase after laser injury. BLT1 was highly expressed in M2 macrophages in vitro and in vivo, and ocular BLT1+ M2 macrophages were increased in the aged eyes after laser injury. Furthermore, M2 macrophages were rapidly attracted by LTB4 and subsequently produced VEGF-A- through BLT1-mediated signaling. Consequently, intravitreal injection of M2 macrophages augmented CNV formation, which was attenuated by BLT1 deficiency. Thus, laser-induced injury to the retina triggered LTB4 production and attracted M2 macrophages via BLT1, leading to development of CNV. A selective BLT1 antagonist (CP105696) and 3 LTB4 inhibitors (zileuton, MK-886, and bestatin) reduced CNV in a dose-dependent manner. CP105696 also inhibited the accumulation of BLT1+ M2 macrophages in the laser-injured eyes of aged mice. Together, these results indicate that the LTB4-BLT1 axis is a potentially novel therapeutic target for CNV of wet-type AMD. Topics: Animals; Benzopyrans; Carboxylic Acids; Choroidal Neovascularization; Disease Models, Animal; Eye; Eye Injuries; Hydroxyurea; Indoles; Lasers; Leucine; Leukotriene B4; Macrophages; Macular Degeneration; Male; Mice; Mice, Knockout; Neovascularization, Pathologic; Receptors, Leukotriene B4; Signal Transduction | 2018 |
Sleep Deprivation Induces Dry Eye Through Inhibition of PPARα Expression in Corneal Epithelium.
To determine if sleep deprivation induces dry eye through altering peroxisome proliferator-activated receptor alpha (PPARα) expression in mice.. The "stick over water" sleep deprivation-induced dry eye (SDE) model evaluated PPARα involvement in inducing this condition. Scanning electron microscopy (SEM) examined microvilli morphology in superficial corneal epithelial cells (SCECs) in SDE and PPARα-/- mice. Quantitative RT-PCR (qRT-PCR) and Western blot (WB) or immunostaining evaluated PPARα, carnitine palmitoyl transferase 1α (CPT1α), and transient receptor potential vanilloid 6 (TRPV6) expression levels and Ezrin phosphorylation status. Hematoxylin-eosin and Oil Red O staining characterized meibomian gland morphology and corneal lipid accumulation, respectively. Phenol red cotton threads measured tear production. In cultured corneal epithelial sheets, qRT-PCR, WB, and SEM determined the individual effects of fenofibrate and MK886 (PPARα agonist and antagonist, respectively) on PPARα, TRPV6 expression, and SCEC microvilli morphology.. Corneal epithelial lipid accumulation, microvilli morphologic changes, and decreased tear production were associated with marked declines in PPARα, CPT1α, and TRPV6 expression levels as well as Ezrin phosphorylation status, whereas meibomian glands were unaltered in SDE mice. These effects of SDE mice mimicked those in their nonstressed PPARα-/-counterpart. Topical application of fenofibrate reversed these effects in SDE corneas. In cultured corneal epithelial sheets, fenofibrate increased PPARα and TRPV6 gene and protein expression levels and restored microvilli morphology, whereas MK886 attenuated these changes.. Sleep deprivation induces dry eye through abnormal SCEC microvilli morphology, which is caused by sequential downregulation of PPARα, TRPV6 expression, and Ezrin phosphorylation status in mice. Topics: Animals; Blotting, Western; Calcium Channels; Carnitine O-Palmitoyltransferase; Cells, Cultured; Cytoskeletal Proteins; Disease Models, Animal; Dry Eye Syndromes; Epithelium, Corneal; Fenofibrate; Hypolipidemic Agents; Indoles; Lipoxygenase Inhibitors; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Microscopy, Electron, Scanning; Phosphorylation; PPAR alpha; Real-Time Polymerase Chain Reaction; Sleep Deprivation; Tears; TRPV Cation Channels | 2018 |
Evaluation of Dual 5-Lipoxygenase/Microsomal Prostaglandin E2 Synthase-1 Inhibitory Effect of Natural and Synthetic Acronychia-Type Isoprenylated Acetophenones.
Among the pathways responsible for the development of inflammatory responses, the cyclooxygenase and lipoxygenase pathways are among the most important ones. Two key enzymes, namely, 5-LO and mPGES-1, are involved in the biosynthesis of leukotrienes and prostaglandins, respectively, which are considered attractive therapeutic targets, so their dual inhibition might be an effective strategy to control inflammatory deregulation. Several natural products have been identified as 5-LO inhibitors, with some also being dual 5-LO/mPGES-1 inhibitors. Here, some prenylated acetophenone dimers from Acronychia pedunculata have been identified for their dual inhibitory potency toward 5-LO and mPGES-1. To gain insight into the SAR of this family of natural products, the synthesis and biological evaluation of analogues are presented. The results show the ability of the natural and synthetic molecules to potently inhibit 5-LO and mPEGS-1 in vitro. The potency of the most active compound (10) has been evaluated in vivo in an acute inflammatory mouse model and displayed potent anti-inflammatory activity comparable in potency to the drug zileuton used as a positive control. Topics: Acetophenones; Animals; Anti-Inflammatory Agents; Arachidonate 5-Lipoxygenase; Disease Models, Animal; Humans; Hydroxyurea; Inhibitory Concentration 50; Intramolecular Oxidoreductases; Lipoxygenase Inhibitors; Mice; Molecular Structure; Prenylation; Prostaglandin-E Synthases; Rutaceae; Structure-Activity Relationship | 2017 |
PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats.
Peroxisome proliferator-activated receptor (PPAR) α/γ may control lipid metabolism and inflammatory response by regulating the downstream target genes, and play a crucial role in the process of non-alcoholic steatohepatitis (NASH) formation, but the difference and interaction between PPARα and PPARγ are poorly understood. The rat model with NASH was established by orally feeding high-fat and high-sucrose emulsion for 6weeks. The results shown that after the model rats were simultaneously treated with PPARα/γ agonists, the total cholesterol (TC), triglyceride (TG) and inflammatory cytokine levels in serum and hepatic tissue, the hepatic steatosis and inflammatory cellular infiltration were decreased, and were consistent with the results of hepatic lipogenic gene and nuclear factor (NF)-κB protein expressions. Conversely, these indexes were increased by PPARα/γ antagonist treatment. Compared with the model group, the serum free fatty acid (FFA) level was increased in the PPARα agonist-treated group, decreased in the PPARγ agonist-treated group, and unchanged in the PPARα/γ agonists-treated group. The hepatic FFA level was low in the PPARα/γ agonists-treated groups, but no significant variation in the PPARα/γ antagonists-treated groups. The increments of hepatic reduced glutathione (GSH) and superoxide dismutase (SOD) contents in the PPARα/γ agonists-treated groups were accompanied by decreased hepatic malondialdehyde (MDA) content. These findings demonstrated that PPARα/γ activation might decrease the hepatic lipid accumulation, oxidative stress and inflammatory cytokine production, and PPARγ could counterbalance the adverse effect of PPARα on circulating FFA. It was concluded that the integrative application of PPARα and PPARγ agonists might exert a synergic inhibitory effect on NASH formation through the modulation of PPARα/γ-mediated lipogenic and inflammatory gene expressions. Topics: Anilides; Animals; Chemokine CCL2; Cytokines; Disease Models, Animal; Fatty Acids, Nonesterified; Fenofibrate; Gene Expression Regulation; Glutathione; Indoles; Inflammation; Interleukin-6; Interleukin-8; Lipid Metabolism; Liver; Male; Malondialdehyde; NF-kappa B; Non-alcoholic Fatty Liver Disease; Oxidative Stress; PPAR alpha; PPAR gamma; Rats; Rats, Sprague-Dawley; Rosiglitazone; Superoxide Dismutase; Thiazolidinediones; Tumor Necrosis Factor-alpha | 2015 |
Roles of 5-lipoxygenase and cysteinyl-leukotriene type 1 receptors in the hematological response to allergen challenge and its prevention by diethylcarbamazine in a murine model of asthma.
Diethylcarbamazine (DEC), which blocks leukotriene production, abolishes the challenge-induced increase in eosinopoiesis in bone-marrow from ovalbumin- (OVA-) sensitized mice, suggesting that 5-lipoxygenase (5-LO) products contribute to the hematological responses in experimental asthma models. We explored the relationship between 5-LO, central and peripheral eosinophilia, and effectiveness of DEC, using PAS or BALB/c mice and 5-LO-deficient mutants. We quantified eosinophil numbers in freshly harvested or cultured bone-marrow, peritoneal lavage fluid, and spleen, with or without administration of leukotriene generation inhibitors (DEC and MK886) and cisteinyl-leukotriene type I receptor antagonist (montelukast). The increase in eosinophil numbers in bone-marrow, observed in sensitized/challenged wild-type mice, was abolished by MK886 and DEC pretreatment. In ALOX mutants, by contrast, there was no increase in bone-marrow eosinophil counts, nor in eosinophil production in culture, in response to sensitization/challenge. In sensitized/challenged ALOX mice, challenge-induced migration of eosinophils to the peritoneal cavity was significantly reduced relative to the wild-type PAS controls. DEC was ineffective in ALOX mice, as expected from a mechanism of action dependent on 5-LO. In BALB/c mice, challenge significantly increased spleen eosinophil numbers and DEC treatment prevented this increase. Overall, 5-LO appears as indispensable to the systemic hematological response to allergen challenge, as well as to the effectiveness of DEC. Topics: Allergens; Animals; Arachidonate 5-Lipoxygenase; Asthma; Diethylcarbamazine; Disease Models, Animal; Eosinophils; Hematopoiesis; Indoles; Leukotrienes; Mice; Mice, 129 Strain; Mice, Inbred BALB C; Mice, Knockout; Ovalbumin; Receptors, Leukotriene; Signal Transduction | 2014 |
Attenuation of acute pancreatitis by peroxisome proliferator-activated receptor-α in rats: the effect on Toll-like receptor signaling pathways.
The peroxisome proliferator-activated receptor-α (PPAR-α) has attracted considerable attention for its anti-inflammatory properties; however, Toll-like receptor (TLR) pathways have an essential proinflammatory role in acute pancreatitis (AP). This study aimed to evaluate the attenuation of inflammation by PPAR-α and to investigate the interaction between PPAR-α and TLR pathways in AP.. Acute pancreatitis was induced in rats by administration of cerulein. The PPAR-α agonist WY14643 and/or antagonist MK886 was administered. The severity of AP was determined by measuring serum amylase, lipase, Ca(2+), pathological changes, myeloperoxidase activity, serum levels of interleukin (IL)-6, and intercellular adhesion molecule-1 (ICAM-1). The TLR2 and TLR4 messenger RNA (mRNA) and proteins were determined by real-time reverse transcriptase polymerase chain reaction and Western blotting, respectively. The mRNA expressions of target molecules of TLR pathways, including IL-6, IL-10, ICAM-1, and tumor necrosis factor α were also measured.. Treatment with WY14643 significantly decreased amylase, lipase, myeloperoxidase activity, pathological scores, IL-6, and ICAM-1 levels. The TLR2 and TLR4 mRNA and proteins were markedly decreased after treatment with WY14643, along with IL-6, ICAM-1, and tumor necrosis factor α mRNA levels. However, these effects were completely reversed by the coadministration of MK886.. Activation of PPAR-α played a protective role in AP, partially mediated by modulation of TLR pathways. Topics: Amylases; Animals; Anti-Inflammatory Agents; Biomarkers; Blotting, Western; Calcium; Ceruletide; Cytokines; Disease Models, Animal; Gene Expression Regulation; Indoles; Intercellular Adhesion Molecule-1; Lipase; Male; Neutrophil Infiltration; Pancreas; Pancreatitis; Peroxidase; PPAR alpha; Pyrimidines; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Time Factors; Toll-Like Receptor 2; Toll-Like Receptor 4; Toll-Like Receptor 9; Toll-Like Receptors | 2013 |
Impact of 5-lipoxygenase inhibitors on the spatiotemporal distribution of inflammatory cells and neuronal COX-2 expression following experimental traumatic brain injury in rats.
The inflammatory response following traumatic brain injury (TBI) contributes to neuronal death with poor outcome. Although anti-inflammatory strategies were beneficial in the experimental TBI, clinical translations mostly failed, probably caused by the complexity of involved cells and mediators. We recently showed in a rat model of controlled cortical impact (CCI) that leukotriene inhibitors (LIs) attenuate contusion growth and improve neuronal survival. This study focuses on spatiotemporal characteristics of macrophages and granulocytes, typically involved in inflammatory processes, and neuronal COX-2 expression. Effects of treatment with LIs (Boscari/MK-886), started prior trauma, were evaluated by quantifying CD68(+), CD43(+) and COX-2(+) cells 24h and 72 h post-CCI in the parietal cortex (PC), CA3 region, dentate gyrus (DG) and visual/auditory cortex (v/aC). Correlations were applied to identify intercellular relationships. At 24h, untreated animals showed granulocyte invasion in all regions, decreasing towards 72 h. Macrophages increased from 24h to 72 h post-CCI in PC and v/aC. COX-2(+) neurones showed no temporal changes, except of an increase in the CA3 region at 72 h. Treatment reduced granulocytes at 24h in the pericontusional zone and hippocampus, and macrophages at 72 h in the PC and v/aC. COX-2 expression remained unaffected by LIs, except of time-specific changes in the DG (increase/decrease at 24/72 h). Interrelations confirmed concomitant cellular reactions beyond the initial trauma site. In conclusion, LIs attenuated the cellular inflammatory response following CCI. Future studies have to clarify region-specific effects and explore the potential of a clinically more relevant therapeutic approach applying LIs after CCI. Topics: Animals; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Arachidonate 5-Lipoxygenase; Brain Injuries; Cell Count; Cerebral Cortex; Cyclooxygenase 2; Disease Models, Animal; Disease Progression; Granulocytes; Indoles; Leukosialin; Lipoxygenase Inhibitors; Macrophages; Male; Microscopy, Confocal; Neuroimmunomodulation; Neurons; Neuroprotective Agents; Plant Extracts; Rats, Sprague-Dawley | 2013 |
Novel use of a lipid-lowering fibrate medication to prevent nicotine reward and relapse: preclinical findings.
Experimental drugs that activate α-type peroxisome proliferator-activated receptors (PPARα) have recently been shown to reduce the rewarding effects of nicotine in animals, but these drugs have not been approved for human use. The fibrates are a class of PPARα-activating medications that are widely prescribed to improve lipid profiles and prevent cardiovascular disease, but these drugs have not been tested in animal models of nicotine reward. Here, we examine the effects of clofibrate, a representative of the fibrate class, on reward-related behavioral, electrophysiological, and neurochemical effects of nicotine in rats and squirrel monkeys. Clofibrate prevented the acquisition of nicotine-taking behavior in naive animals, substantially decreased nicotine taking in experienced animals, and counteracted the relapse-inducing effects of re-exposure to nicotine or nicotine-associated cues after a period of abstinence. In the central nervous system, clofibrate blocked nicotine's effects on neuronal firing in the ventral tegmental area and on dopamine release in the nucleus accumbens shell. All of these results suggest that fibrate medications might promote smoking cessation. The fact that fibrates are already approved for human use could expedite clinical trials and subsequent implementation of fibrates as a treatment for tobacco dependence, especially in smokers with abnormal lipid profiles. Topics: Action Potentials; Animals; Clofibrate; Disease Models, Animal; Dopamine; Drug Evaluation, Preclinical; Hypolipidemic Agents; Indoles; Male; Neurons; Nicotine; Nucleus Accumbens; PPAR alpha; Rats; Rats, Sprague-Dawley; Reward; Saimiri; Secondary Prevention; Self Administration; Tobacco Use Disorder; Ventral Tegmental Area | 2012 |
Leukotriene B4 mediates inflammation via TRPV1 in duct obstruction-induced pancreatitis in rats.
We tested the hypothesis that leukotriene B4 (LTB4) mediates pancreatic inflammation in rats via activation of the transient receptor potential vanilloid 1 (TRPV1).. Leukotriene B4 or a vehicle was administered to adult rats via celiac axis injection after pretreatment with the TRPV1 antagonist, capsazepine, or vehicle, and the severity of subsequent pancreatitis was assessed by measuring pancreatic edema, myeloperoxidase (MPO) activity, and histological grading. In a second experiment, acute pancreatitis was induced by common pancreaticobiliary duct ligation. Six hours after surgery, pancreatic tissue levels of LTB4 were determined by enzyme-linked immunosorbent assay. Also, the effects of inhibition of LTB4 biosynthesis by pretreatment with the 5-lipoxygenase-activating peptide inhibitor, MK-886, were determined.. Celiac axis administration of LTB4 significantly increased pancreatic edema and MPO activity, and produced histological evidence of pancreatic edema, neutrophil infiltration, and necrosis. Capsazepine pretreatment significantly reduced all inflammatory parameters in LTB4-induced pancreatitis. Pancreatic tissue levels of LTB4 were significantly elevated in rats that underwent common pancreaticobiliary duct ligation compared with control rats. MK-886 pretreatment significantly inhibited pancreatic edema, histological damage, and pancreatic MPO concentrations.. Common pancreaticobiliary duct obstruction causes an increase in pancreatic LTB4 concentrations that in turn mediates activation of TRPV1 resulting in acute pancreatitis. Topics: Animals; Capsaicin; Cholestasis; Disease Models, Animal; Indoles; Inflammation Mediators; Leukotriene B4; Ligation; Lipoxygenase Inhibitors; Male; Models, Biological; Pancreatitis; Peroxidase; Rats; Rats, Sprague-Dawley; TRPV Cation Channels | 2011 |
Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats.
Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity.. The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways.. Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS) for 1 hr then resuscitated with Ringer's lactate (1 hr) (induced untreated group, HS); group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period). At the end of experiment (2 hr after completion of resuscitation), blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The trachea was then isolated and bronchoalveolar lavage fluid (BALF) was carried out for measurement of leukotriene B4 (LTB4), leukotriene C4 (LTC4) and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) and the right lung was fixed in 10% formalin for histological examination.. MK-886 treatment significantly reduced the total lung injury score compared with the HS group (P < 0.05). MK-886 also significantly decreased serum TNF-α & IL-6; lung MDA; BALF LTB4, LTC4 & total protein compared with the HS group (P < 0.05). MK-886 treatment significantly prevented the decrease in the lung GSH levels compared with the HS group (P < 0.05).. The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of leukotrienes in the pathogenesis of hemorrhagic shock-induced lung inflammation. Topics: Acute Lung Injury; Animals; Disease Models, Animal; Indoles; Leukotriene B4; Leukotriene C4; Lipoxygenase Inhibitors; Male; Oxidative Stress; PPAR alpha; Rats; Shock, Hemorrhagic; Treatment Outcome | 2011 |
Leukotriene synthesis inhibitor decreases vasopressin release in the early phase of sepsis.
The aim was to analyze the effect of leukotriene synthesis inhibitor administered intraperitoneally in vasopressin release during sepsis. Male Wistar rats received injections of MK-886 (1.0, 2.0 or 4.0 mg/kg) or vehicle (DMSO 5%) 1 h before cecal ligation and puncture. There was some variation on the survival rate depending on the dose used but the drug did not modify the hematocrit, osmolality, serum sodium and nitrate, plasma protein, and neutrophil recruitment, in any dose. Nevertheless, vasopressin (AVP) release decreased in a dose-response manner in the early phase of sepsis. These results support the suggestion that leukotrienes (LTs) are involved in AVP release during sepsis. Topics: Animals; Cecum; Cell Movement; Disease Models, Animal; Enzyme Inhibitors; Hematocrit; Indoles; Leukotrienes; Ligation; Lipoxygenase Inhibitors; Male; Neutrophils; Nitrates; Osmolar Concentration; Peritoneal Cavity; Proteins; Punctures; Radioimmunoassay; Rats; Rats, Wistar; Sepsis; Sodium; Vasopressins | 2011 |
Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism.
Peripheral cannabinoid receptors exert a powerful inhibitory control over pain initiation, but the endocannabinoid signal that normally engages this intrinsic analgesic mechanism is unknown. To address this question, we developed a peripherally restricted inhibitor (URB937) of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide. URB937 suppressed FAAH activity and increased anandamide levels outside the rodent CNS. Despite its inability to access brain and spinal cord, URB937 attenuated behavioral responses indicative of persistent pain in rodent models of peripheral nerve injury and inflammation and prevented noxious stimulus-evoked neuronal activation in spinal cord regions implicated in nociceptive processing. CB₁ cannabinoid receptor blockade prevented these effects. These results suggest that anandamide-mediated signaling at peripheral CB₁ receptors controls the access of pain-related inputs to the CNS. Brain-impenetrant FAAH inhibitors, which strengthen this gating mechanism, might offer a new approach to pain therapy. Topics: Amidohydrolases; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Carrageenan; Chromatography, Liquid; Disease Models, Animal; Drug Administration Routes; Drug Administration Schedule; Endocannabinoids; Enzyme Inhibitors; Escape Reaction; Ethylene Glycols; Feeding Behavior; Formaldehyde; Gene Expression Regulation; Hyperalgesia; Indoles; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Mice, Knockout; Monoacylglycerol Lipases; Motor Activity; Oncogene Proteins v-fos; Pain; Pain Measurement; Pain Threshold; Peripheral Nervous System Diseases; Piperidines; Polyunsaturated Alkamides; PPAR alpha; Pyrazoles; Rats; Rats, Sprague-Dawley; Rimonabant; Sciatica; Spinal Cord; Statistics, Nonparametric; Time Factors; Tissue Distribution; Tritium | 2010 |
Effect of montelukast and MK-886 on hepatic ischemia-reperfusion injury in rats.
Hepatic ischemia-reperfusion injury (I/R) may occur in transplantation, trauma, and elective hepatic resections. Leukotrienes have been shown to play a major role in hepatic I/R injury. Five-lipoxygenase enzyme is an important enzyme in the production of leukotrienes from arachidonic acid. MK-886 is an inhibitor of 5-lipoxygenase, and montelukast is a cysteinyl leukotriene receptor antagonist. The aim of this study was to investigate whether MK-886 and montelukast are effective in preventing hepatic I/R injury.. Rats were divided into five groups consisting of seven rats in each: (1) Control I/R, (2) Control-montelukast, (3) Control-MK-886, (4) I/R+montelukast, and (5) I/R+MK-886. Thirty min of total hepatic vascular occlusion and then 60 min reperfusion were performed to animals in groups 1, 4, and 5. In groups 2 and 4, montelukast, and in groups 3 and 5, MK-886 was applied intraperitoneally before and during the surgical procedures.. Apoptosis in the liver and intestine decreased significantly in the I/R+montelukast and I/R+MK-886 groups compared with the I/R group. Tissue malondialdehyde levels and glutathione consumptions also decreased significantly in the I/R+montelukast and I/R+MK-886 groups compared with the I/R group. The difference in serum alanine aminotransferase and aspartate aminotransferase levels between the groups did not reach significance.. Montelukast and MK-886 were found to be effective in prevention of liver and intestine injury by reducing apoptosis and oxidative stress in a hepatic I/R model. Anti-inflammatory properties and inhibition of lipid peroxidation by montelukast and MK-886 could be protective for these organs in I/R injury. Topics: Acetates; Animals; Cyclopropanes; Disease Models, Animal; Indoles; Leukotriene Antagonists; Lipoxygenase Inhibitors; Liver Diseases; Male; Quinolines; Rats; Rats, Wistar; Reperfusion Injury; Sulfides | 2009 |
Blocking central leukotrienes synthesis affects vasopressin release during sepsis.
Recent studies revealed that vasopressinergic neurons have a high content of cys-leukotriene C(4) (LTC(4)) synthase, a critical enzyme in cys-leukotriene synthesis that may play a role in regulating vasopressin secretion. This study investigates the role of this enzyme in arginine vasopressin (AVP) release during experimentally induced sepsis. Male Wistar rats received an i.c.v. injection of 3-[1-(p-chlorobenzyl)-5-(isopropyl)-3-tert-butylthioindol-2-yl]-2, 2-dimethylpropanoic acid (MK-886) (1.0 microg/kg), a leukotrienes (LTs) synthesis inhibitor, or vehicle, 1 h before cecal ligation and puncture (CLP) or sham operation. In one group of animals the survival rate was monitored for 3 days. In another group, the animals were decapitated at 0, 4, 6, 18 and 24 h after CLP or sham operation, and blood was collected for hematocrit, serum sodium and nitrate, plasma osmolality, protein and AVP determination. A third group was used for blood pressure measurements. The neurohypophysis was removed for quantification of AVP content, and the hypothalamus was dissected for LTC(4) synthase analysis by Western blot. Mortality after CLP was reduced by the central administration of MK-886. The increase in plasma AVP levels and hypothalamus LTC(4) synthase content in the initial phase of sepsis was blocked, whereas the decrease in neurohypophyseal AVP content was partially reversed. Also the blood pressure drop was abolished in this phase. The increase of serum nitric oxide and hematocrit was reduced, and the decrease in plasma protein and osmolality was not affected by the LTs blocker. In the final phase of sepsis, the plasma AVP level and the hypothalamic LTC(4) synthase content were at basal levels. The central administration of MK-886 increased the hypothalamic LTC(4) synthase content but did not alter the plasma and neurohypophysis AVP levels observed, or the blood pressure during this phase. These results suggest that the central LTs are involved in the vasopressin release observed during sepsis. Topics: Animals; Arginine Vasopressin; Disease Models, Animal; Glutathione Transferase; Hematocrit; Hypotension; Hypothalamus; Indoles; Leukotriene C4; Leukotrienes; Lipoxygenase Inhibitors; Male; Nitric Oxide; Pituitary Gland, Posterior; Rats; Rats, Wistar; Sepsis | 2009 |
Ccl2 and Ccl3 mediate neutrophil recruitment via induction of protein synthesis and generation of lipid mediators.
Although the chemokines monocyte chemoattractant protein-1 (Ccl2/JE/MCP-1) and macrophage inflammatory protein-1alpha (Ccl3/MIP-1alpha) have recently been implicated in neutrophil migration, the underlying mechanisms remain largely unclear.. Stimulation of the mouse cremaster muscle with Ccl2/JE/MCP-1 or Ccl3/MIP-1alpha induced a significant increase in numbers of firmly adherent and transmigrated leukocytes (>70% neutrophils) as observed by in vivo microscopy. This increase was significantly attenuated in mice receiving an inhibitor of RNA transcription (actinomycin D) or antagonists of platelet activating factor (PAF; BN 52021) and leukotrienes (MK-886; AA-861). In contrast, leukocyte responses elicited by PAF and leukotriene-B(4) (LTB(4)) themselves were not affected by actinomycin D, BN 52021, MK-886, or AA-861. Conversely, PAF and LTB(4), but not Ccl2/JE/MCP-1 and Ccl3/MIP-1alpha, directly activated neutrophils as indicated by shedding of CD62L and marked upregulation of CD11b. Moreover, Ccl2/JE/MCP-1- and Ccl3/MIP-1alpha-elicited leakage of fluorescein isothiocyanate dextran as well as collagen IV remodeling within the venular basement membrane were completely absent in neutrophil-depleted mice.. Ccl2/JE/MCP-1 and Ccl3/MIP-1alpha mediate firm adherence and (subsequent) transmigration of neutrophils via protein synthesis and secondary generation of leukotrienes and PAF, which in turn directly activate neutrophils. Thereby, neutrophils facilitate basement membrane remodeling and promote microvascular leakage. Topics: 1-Alkyl-2-acetylglycerophosphocholine Esterase; Animals; Benzoquinones; Cells, Cultured; Chemokine CCL2; Chemokine CCL3; Chemotaxis, Leukocyte; Dactinomycin; Disease Models, Animal; Indoles; Indomethacin; Leukotriene B4; Lipoxygenase Inhibitors; Male; Mice; Mice, Inbred BALB C; Neutrophil Infiltration; Protein Biosynthesis; Random Allocation; Sensitivity and Specificity | 2009 |
Injury-related production of cysteinyl leukotrienes contributes to brain damage following experimental traumatic brain injury.
The leukotrienes belong to a family of biologically active lipids derived from arachidonate that are often involved in inflammatory responses. In the central nervous system, a group of leukotrienes, known as the cysteinyl leukotrienes, is generated in brain tissue in response to a variety of acute brain injuries. Although the exact clinical significance of this excess production remains unclear, the cysteinyl leukotrienes may contribute to injury-related disruption of the brain-blood barrier and exacerbate secondary injury processes. In the present study, the formation and role of cysteinyl leukotrienes was explored in the fluid percussion injury model of traumatic brain injury in rats. The results showed that levels of the cysteinyl leukotrienes were elevated after fluid percussion injury with a maximal formation 1 hour after the injury. Neutrophils contributed to cysteinyl leukotriene formation in the injured brain hemisphere, potentially through a transcellular biosynthetic mechanism. Furthermore, pharmacological reduction of cysteinyl leukotriene formation after the injury, using MK-886, resulted in reduction of brain lesion volumes, suggesting that the cysteinyl leukotrienes play an important role in traumatic brain injury. Topics: Animals; Brain Injuries; Chromatography, Liquid; Cysteine; Disease Models, Animal; Enzyme Inhibitors; Indoles; Leukotriene B4; Leukotriene C4; Leukotriene D4; Leukotriene E4; Leukotrienes; Male; Mass Spectrometry; Neutrophils; Rats; Rats, Sprague-Dawley | 2009 |
Involvement of LTB4 in zymosan-induced joint nociception in mice: participation of neutrophils and PGE2.
Leukotriene B4 (LTB4) mediates different inflammatory events such as neutrophil migration and pain. The present study addressed the mechanisms of LTB4-mediated joint inflammation-induced hypernociception. It was observed that zymosan-induced articular hypernociception and neutrophil migration were reduced dose-dependently by the pretreatment with MK886 (1-9 mg/kg; LT synthesis inhibitor) as well as in 5-lypoxygenase-deficient mice (5LO(-/-)) or by the selective antagonist of the LTB(4) receptor (CP105696; 3 mg/kg). Histological analysis showed reduced zymosan-induced articular inflammatory damage in 5LO(-/-) mice. The hypernociceptive role of LTB4 was confirmed further by the demonstration that joint injection of LTB4 induces a dose (8.3, 25, and 75 ng)-dependent articular hypernociception. Furthermore, zymosan induced an increase in joint LTB4 production. Investigating the mechanism underlying LTB4 mediation of zymosan-induced hypernociception, LTB4-induced hypernociception was reduced by indomethacin (5 mg/kg), MK886 (3 mg/kg), celecoxib (10 mg/kg), antineutrophil antibody (100 mug, two doses), and fucoidan (20 mg/kg) treatments as well as in 5LO(-/-) mice. The production of LTB4 induced by zymosan in the joint was reduced by the pretreatment with fucoidan or antineutrophil antibody as well as the production of PGE2 induced by LTB4. Therefore, besides reinforcing the role of endogenous LTB4 as an important mediator of inflamed joint hypernociception, these results also suggested that the mechanism of LTB4-induced articular hypernociception depends on prostanoid and neutrophil recruitment. Furthermore, the results also demonstrated clearly that LTB4-induced hypernociception depends on the additional release of endogenous LTs. Concluding, targeting LTB4 synthesis/action might constitute useful therapeutic approaches to inhibit articular inflammatory hypernociception. Topics: Animals; Arachidonate 5-Lipoxygenase; Benzopyrans; Carboxylic Acids; Cell Movement; Dinoprostone; Disease Models, Animal; Dose-Response Relationship, Drug; Indoles; Leukotriene B4; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neutrophils; Temporomandibular Joint; Temporomandibular Joint Disorders; Time Factors; Zymosan | 2008 |
Comparison of pre- versus post-incision administration of intraplantar indomethacin and MK886 in a rat model of postoperative pain.
The amplification of pain long after the initial stimulus may be avoided if the treatment of pain is introduced before its initiation. However, conflicting evidence exists about the efficacy of such preemptive analgesia for the management of postoperative pain. This study compares the efficacy of intraplantar administration of indomethacin (a non-selective inhibitor of cyclooxygenase) and MK886 (an inhibitor of 5-lipoxygenase-activating protein), separately or in combination to produce preemptive analgesia in a model of surgical incisional pain in male Wistar rats. All incised rats (5 to 6 rats per group) had allodynia at 2, 6, and 24 h after surgery as evaluated using von Frey filaments. MK886, but not indomethacin (50 to 200 microg/paw), reduced the allodynia when injected either 1 h before or 1 h after surgery. The effect of preoperative MK886 (160 microg/paw) against incisional allodynia had a magnitude apparently similar to that produced by postoperative MK886. Pre-, but not postoperative MK886 (80 microg/paw) reduced the allodynia but the effect was seen only at 6 h after surgery. In contrast, MK886 (40 microg/paw) intensified the allodynia observed 2 h after the incision either injected before or after surgery. MK886 or indomethacin alone did not provide preemptive analgesia in the model of incisional pain. In contrast, the combination of MK886 with indomethacin reduced the allodynia more effectively when used before than after surgery, thus fulfilling the criteria for preemptive analgesia. In conclusion, preoperative inhibition of the local generation of both prostaglandins and leukotrienes by surgical incision may be an alternative to provide preemptive analgesia. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Disease Models, Animal; Drug Therapy, Combination; Indoles; Indomethacin; Lipoxygenase Inhibitors; Male; Pain, Postoperative; Rats; Rats, Wistar | 2007 |
Intrapulmonary application of a 5-lipoxygenase inhibitor using surfactant as a carrier reduces lung edema in a piglet model of airway lavage.
Leukotriene-generated effects on microvascular integrity and polymorphonuclear leukocytes (PMNL) play a key role in the inflammatory process of the alveolar-capillary unit in neonatal acute respiratory distress syndrome. We asked if intrapulmonary application of MK886, a 5-lipoxygenase inhibitor, and the use of a porcine surfactant preparation (Curosurftrade mark) as a carrier substance would improve lung function in a neonatal piglet model of airway lavage. Anesthetized, mechanically ventilated newborn piglets (n = 19) underwent repeated airway lavage to induce acute lung injury. Piglets then received either surfactant alone (S, n = 6), or MK886 admixed with surfactant (S + MK, n = 7), or an air-bolus injection as control (C, n = 6). Measurements of gas exchange, lung function, extravascular lung water (EVLW), cell counts, and leukotriene B(4) (LTB(4)) concentrations in bronchoalveolar lavage fluid (BAL) were performed during 6 hr of mechanical ventilation. Arterial oxygen partial pressure (PaO(2)) (S, 13.8 +/- 4.2 kPa, vs. S + MK, 20 +/- 6.6; P < 0.05), functional residual capacity (S, 15.1 +/- 6.8 ml/kg, vs. S + MK, 18.8 +/- 3.7 ml/kg; P < 0.05), and EVLW (S, 29 +/- 14 ml/kg, vs. S + MK 24 +/- 4 ml/kg; P < 0.05) were significantly improved in the MK886 group. This clinical effect was linked with a decrease in LTB(4) concentration in BAL (S, 3.5 (1.9-5.4) pg/ml, vs. S + MK, 1.6 (0.7-4.7) pg/ml; P < 0.05) and an increase in IL-8 (S, 2,103 (852-4,243) pg/ml, vs. S + MK, 3,815 (940-26,187) pg/ml; P < 0.05). PMNL counts in BAL were reduced (S, 570 +/- 42 cells/ml, vs. 275 +/- 35 cells/ml; P < 0.05). In conclusion, intrapulmonary application of the 5-lipoxygenase inhibitor MK886 with surfactant as a carrier improves lung function by decreasing EVLW as the main response to LTB(4) reduction. Topics: Animals; Animals, Newborn; Biological Products; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Female; Hemodynamics; Humans; Indoles; Infant, Newborn; Interleukin-8; Leukotriene B4; Lipoxygenase Inhibitors; Lung; Male; Phospholipids; Pulmonary Edema; Pulmonary Gas Exchange; Respiration, Artificial; Respiratory Distress Syndrome, Newborn; Swine | 2006 |
The peroxisome proliferator-activated receptor alpha activator, Wy14,643, is anti-inflammatory in vivo.
The peroxisome proliferator-activated receptor system is exciting much interest as a novel point of therapeutic intervention in inflammation. Here, the effect of a peroxisome proliferator-activated receptor alpha agonist, [4-chloro-6-(2,3-xylidine)-pyrimidinylthio]acetic acid (Wy14,643), was examined in arachidonic acid-induced murine ear inflammation. 3-[1-(4-Chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2-dimethylpropanoic acid (MK886, a 5-lipoxygenase inhibitor) and indomethacin (a cyclo-oxygenase inhibitor) were used as reference compounds. Wy14,643 dose dependently inhibited ear swelling and polymorphonuclear leukocyte influx, as did MK886, associated with reduced tissue leukotriene B4 but not prostaglandin E2 levels. Unlike MK886, Wy14,643 did not inhibit ex vivo leukotriene B4 production. However, Wy14,643, but not MK886, induced peroxisomal enzyme activity. Indomethacin was less effective, though tissue prostaglandin E2 but not leukotriene B4 levels were reduced. Again, unlike indomethacin, Wy14,643 did not reduce ex vivo prostaglandin E2 production. However, indomethacin did increase peroxisomal enzyme activity but to a lesser extent than Wy14,643. This study demonstrates that peroxisome proliferator-activated receptor alpha activation can inhibit arachidonic acid-induced inflammation in part by enhancing degradation of leukotriene B4. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Arachidonate 5-Lipoxygenase; Dinoprostone; Disease Models, Animal; Dose-Response Relationship, Drug; Ear, External; Edema; Female; Indoles; Indomethacin; Inflammation; Leukotriene B4; Lipoxygenase Inhibitors; Mice; Neutrophils; Palmitoyl Coenzyme A; Peroxisomes; PPAR alpha; Prostaglandin-Endoperoxide Synthases; Pyrimidines | 2005 |
Blockade of endogenous leukotrienes exacerbates pulmonary histoplasmosis.
Leukotrienes are classical mediators of inflammatory response. New aspects of leukotriene function have recently been described. We examine here the previously unreported role that leukotrienes play in the regulation of cytokines in a murine model of histoplasmosis. We demonstrate that administration of MK 886, a leukotriene synthesis inhibitor, caused Histoplasma capsulatum-infected mice to die by the day 15 of infection, whereas the correlating death rate in untreated infected mice was 0%. Treating infected animals with MK 886 inhibited leukotriene synthesis but increased leukocyte recruitment to the lungs. Subsequent to this phenomenon, levels of tumor necrosis factor alpha, interleukin-1 (IL-1), IL-6, and KC chemoattractant cytokines and fungi in the lung parenchyma increased, as did inflammatory response. In contrast, IL-2, IL-5, IL-12, and gamma interferon cytokine levels actually decreased. Thus, murine response to pulmonary histoplasmosis may be leukotriene modulated. This finding may enable us to alter the course of the immune response and inflammation caused by histoplasmosis. The data from the present study suggest an important new strategy for immunologic or drug intervention in human patients. Topics: Animals; Bronchoalveolar Lavage Fluid; Cytokines; Disease Models, Animal; Histoplasma; Histoplasmosis; Humans; In Vitro Techniques; Indoles; Leukocytes; Leukotrienes; Lipoxygenase Inhibitors; Lung Diseases, Fungal; Male; Mice; Mice, Inbred C57BL; Nitric Oxide | 2004 |
Leukotriene-mediated coronary vasoconstriction and loss of myocardial contractility evoked by low doses of Escherichia coli hemolysin in perfused rat hearts.
hemolysin has been implicated as an important pathogenic factor in extraintestinal infections including sepsis. We investigated the effects of coronary administration of hemolysin on cardiac function in isolated rat hearts perfused at constant flow.. Prospective, experimental study.. Research laboratory at a university hospital.. Isolated hearts from male Wistar rats.. Isolated hearts were perfused with purified hemolysin for 60 min.. Low concentrations of the toxin in the perfusate (0.1-0.2 hemolytic units/mL) caused a dose-dependent coronary vasoconstriction with a marked increase in coronary perfusion pressure, which was paralleled by a decrease in left ventricular developed pressure (and the maximum rate of left ventricular pressure increase). Moreover, 0.2 hemolytic units/mL hemolysin evoked ventricular fibrillation within 10 mins of toxin application. These events were accompanied by the liberation of leukotrienes (LTC4, LTD4, LTE4, and LTB4), thromboxane A2, prostaglandin I2, and the cell necrosis markers lactate dehydrogenase and creatine kinase into the recirculating perfusate. The lipoxygenase inhibitor MK-886 fully blocked the toxin-induced coronary vasoconstrictor response and the loss of myocardial contractility and reduced the release of lactate dehydrogenase and creatine kinase. In contrast to this, the cyclooxygenase inhibitor indomethacin was entirely ineffective. In addition, hemolysin elicited an increase in heart weight and left ventricular end-diastolic pressure, the latter again being suppressed by MK-886.. Low doses of hemolysin cause strong coronary vasoconstriction, linked with loss of myocardial performance, release of cell injury enzymes, and electrical instability, with all events being largely attributable to toxin-elicited leukotriene generation in the coronary vasculature. Bacterial exotoxins such as hemolysin thus may be implicated in the cardiac abnormalities encountered in septic shock. Topics: Animals; Coronary Circulation; Coronary Vessels; Disease Models, Animal; Dose-Response Relationship, Drug; Escherichia coli; Escherichia coli Infections; Exotoxins; Heart Failure; Hemolysin Proteins; In Vitro Techniques; Indoles; Leukotrienes; Lipoxygenase Inhibitors; Male; Myocardial Contraction; Prospective Studies; Rats; Shock, Septic; Vasoconstriction; Ventricular Dysfunction, Left; Ventricular Fibrillation; Ventricular Pressure | 2003 |
Microsomal prostaglandin E synthase-1 is a major terminal synthase that is selectively up-regulated during cyclooxygenase-2-dependent prostaglandin E2 production in the rat adjuvant-induced arthritis model.
To better define the role of the various prostanoid synthases in the adjuvant-induced arthritis (AIA) model, we have determined the temporal expression of the inducible PGE synthase (mPGES-1), mPGES-2, the cytosolic PGES (cPGES/p23), and prostacyclin synthase, and compared with that of cyclooxygenase-1 (COX-1) and COX-2. The profile of induction of mPGES-1 (50- to 80-fold) in the primary paw was similar to that of COX-2 by both RNA and protein analysis. Quantitative PCR analysis indicated that induction of mPGES-1 at day 15 was within 2-fold that of COX-2. Increased PGES activity was measurable in membrane preparations of inflamed paws, and the activity was inhibitable by MK-886 to >or=90% with a potency similar to that of recombinant rat mPGES-1 (IC(50) = 2.4 microM). The RNA of the newly described mPGES-2 decreased by 2- to 3-fold in primary paws between days 1 and 15 postadjuvant. The cPGES/p23 and COX-1 were induced during AIA, but at much lower levels (2- to 6-fold) than mPGES-1, with the peak of cPGES/p23 expression occurring later than that of COX-2 and PGE(2) production. Prostacyclin (measured as 6-keto-PGF(1alpha)) was transiently elevated on day 1, and prostacyclin synthase was down-regulated at the RNA level after day 3, suggesting a diminished role of prostacyclin during the maintenance of chronic inflammation in the rat AIA. These results show that mPGES-1 is up-regulated throughout the development of AIA and suggest that it plays a major role in the elevated production of PGE(2) in this model. Topics: Adjuvants, Immunologic; Animals; Antigens, Bacterial; Arthritis, Experimental; Cyclooxygenase 2; Cytosol; Dinoprostone; Disease Models, Animal; Edema; Epoprostenol; Hindlimb; Indoles; Injections, Intradermal; Intracellular Membranes; Intramolecular Oxidoreductases; Isoenzymes; Microsomes; Mycobacterium; Prostaglandin Antagonists; Prostaglandin-E Synthases; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Sprague-Dawley; RNA, Messenger; Up-Regulation | 2003 |
Do eicosanoids cause colonic dysfunction in experimental E coli O157:H7 (EHEC) infection?
The pathophysiology of enterohaemorrhagic Escherichia coli (EHEC) infection remains unclear. Eicosanoids have been implicated as pathophysiological mediators in other colitides.. To determine if prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) contribute to mucosal inflammation and dysfunction in EHEC colitis.. Ten day old rabbits were infected with EHEC. For five days after infection, mucosal synthesis of PGE(2) and LTB(4) was measured in distal colonic tissue from control and infected animals and (51)Cr-EDTA permeability was assessed in vivo. Myeloperoxidase activity was measured and histological inflammation and damage were assessed at five days in control and infected animals and after treatment of infected animals with the LTB(4) synthesis inhibitor MK-886. In separate experiments, ion transport was measured in Ussing chambers, before and after in vitro addition of the cyclooxygenase inhibitor indomethacin.. LTB(4) synthesis was increased from day 2 after infection onwards and PGE(2) synthesis was increased on day 3. Mucosal permeability did not increase until day 5 after infection. MK-886 inhibited colonic LTB(4) production but did not reduce diarrhoea, inflammation, or mucosal damage. Electrolyte transport was not significantly altered on day 3 after infection. However, both Cl secretion and reduced Na absorption found on day 5 were partially reversed by indomethacin.. Tissue synthesis of PGE(2) and LTB(4) did not correlate temporally with EHEC induced inflammation or changes in mucosal permeability and ion transport. Cyclooxygenase inhibition partially reversed ion transport abnormalities but lipoxygenase inhibition did not affect mucosal inflammation or histological damage. We conclude that the contribution of eicosanoids to mucosal injury and dysfunction is more complex than previously suggested. Topics: Animals; Colitis; Dinoprostone; Disease Models, Animal; Eicosanoids; Electrolytes; Escherichia coli Infections; Gastric Mucosa; Gastrointestinal Hemorrhage; Indoles; Leukotriene B4; Lipoxygenase Inhibitors; Permeability; Rabbits | 2000 |
Thiopyranol[2,3,4-c,d]indoles as inhibitors of 5-lipoxygenase, 5-lipoxygenase-activating protein, and leukotriene C4 synthase.
The attachment of an arylacetic or benzoic acid moiety to the thiopyrano[2,3,4-c,d]indole nucleus results in compounds which are highly potent and selective 5-lipoxygenase (5-LO) inhibitors. These compounds are structurally simpler than previous compounds of similar potency in that they contain a single chiral center. From the data presented, 2-[[1-(3-chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methoxy]- 4, 5-dihydro-1H-thiopyrano[2,3,4-c,d]indol-2-yl]methoxy]-phenylacetic acid, 14b, was shown to inhibit 5-hydroperoxyeicosatetraenoic acid (5-HPETE) production by human 5-LO (IC50 of 18 nM). The acid 14b is highly selective as an inhibitor of 5-LO activity when compared to the inhibition of ram seminal vesicle cyclooxygenase (IC50 > 5 microM) or human leukocyte leukotriene A4 (LTA4) hydrolase (IC50 > 20 microM). In addition, 14b was inactive in a 5-lipoxygenase-activating protein (FLAP) binding assay at 10 microM. In vivo studies showed that 14b is bioavailable in rat and functionally active in the hyperreactive rat model of antigen-induced dyspnea (74% inhibition at 0.5 mk/kg po; 2 h pretreatment). In the conscious squirrel monkey model of asthma, 14b showed excellent functional activity at 0.1 mg/kg against antigen-induced bronchoconstriction (94% inhibition of the increase in RL and 100% inhibition in the decrease in Cdyn; n = 4). Resolution of this compound gave (-)-14b, the most potent enantiomer (IC50 = 10 nM in the human 5-LO assay), which was shown to possess the S configuration at the chiral center by X-ray crystallographic analysis of an intermediate. Subsequent studies on the aryl thiopyrano[2,3,4-c,d]indole series of inhibitors led to the discovery of potent dual inhibitors of both FLAP and 5-LO, the most potent of which is 2-[[1-(4-chlorobenzyl)-4-methyl-6-(quinolin-2-ylmethoxy)-4, 5-dihydro-1H-thiopyrano[2,3,4-c,d]indol-2-yl]methoxy]phenylacetic acid, 19. Acid 19 has an IC50 of 100 nM for the inhibition of 5-HPETE production by human 5-LO and is active in a FLAP binding assay with an IC50 of 32 nM. Furthermore, thiopyrano[2,3,4-c,d]indoles such as 1 and 14b are capable of inhibiting the LTC4 synthase reaction in a dose dependent manner (IC50s of 11 and 16 microM, respectively, compared to that of LTC2 at 1.2 microM) in contrast to other, structurally distinct 5-LO inhibitors. It has also been observed that the thiopyrano[2,3,4-c,d]indole class of compounds strongly promotes the translocation of 5-LO from the cytosol to a membrane fraction Topics: 5-Lipoxygenase-Activating Proteins; Animals; Arachidonic Acid; Bronchoconstriction; Calcimycin; Carrier Proteins; Crystallography, X-Ray; Disease Models, Animal; Glutathione Transferase; Haplorhini; Humans; Indoles; Lipoxygenase Inhibitors; Male; Membrane Proteins; Models, Molecular; Rats; Seminal Vesicles; Sheep | 1995 |
Leukotrienes and alpha-naphthylisothiocyanate-induced liver injury.
alpha-naphthylisothiocyanate (ANIT) administration to rats results in periportal hepatic inflammation and injury. Glutathione (GSH) appears to be necessary for the liver injury to occur. The leukotrienes (LTs) are metabolites of arachidonic acid and potent mediators of inflammation that have been implicated in certain liver injury models. Inasmuch as GSH is a cofactor for the synthesis of cysteinyl-LTs and since inflammation is a prominent component of ANIT injury, we hypothesized that LTs are involved in producing the hepatic insult that results from ANIT administration. To test this hypothesis, rats were treated with one of several inhibitors of LT biosynthesis, A63162, Zileuton or MK-886. Each of these agents prevented the formation of LTB4 in Ca++ ionophore-stimulated whole blood from rats treated with the inhibitors. A63162 attenuated the hepatic parenchymal injury caused by ANIT and resulted in a modest decrease in ANIT-induced cholestasis. In contrast, neither Zileuton nor MK-886 attenuated liver injury. AT-125 (Acivicin) inhibits gamma-glutamyl transferase (GGT), the enzyme that catalyzes the formation of LTD4 from LTC4. AT-125 pretreatment did not prevent ANIT-induced hepatic parenchymal insult. It did, however, ameliorate the cholestasis caused by ANIT. In conclusion, the partial protection afforded by A63162 and AT-125 likely results from effects unrelated to the formation of LTs, since Zileuton and MK-886 inhibited LT synthesis without affording protection. The lack of protection by Zileuton and MK-886 in the face of LT synthesis inhibition suggests that LTs are not necessary for the expression of injury after ANIT administration. Topics: 1-Naphthylisothiocyanate; Acetamides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Calcimycin; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Glutathione; Hydroxyurea; Indoles; Inflammation; Leukotriene Antagonists; Leukotrienes; Lipoxygenase Inhibitors; Liver; Liver Diseases; Male; Phenyl Ethers; Rats; Rats, Sprague-Dawley | 1995 |
Enhancement of thrombolytic efficacy of tissue-type plasminogen activator by adjuvants in the guinea pig thrombosis model.
Reocclusion following thrombolysis is a major limitation of thrombolytic therapy with recombinant tissue-type plasminogen activator (rt-PA). We investigated the effects of vapiprost ((1R-(1 alpha(Z),2 beta,3 beta,5 alpha))-7-(5-((1,1'-biphenyl)-4-yl-methoxy)- 3-hydroxy-2-(1-piperidinyl)cyclopentyl)-4-heptenoic acid, a thromboxane A2 receptor antagonist); argatroban ((2R,4R)-4-methyl-1-[N2-(3-methyl-1,2,3,4-tetrahydro-8-quinolinyl)sulfon yl] - L-arginyl)]-2-piperidine-carboxylic acid, a specific thrombin inhibitor) and MK-886 (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2- dimethylpropanoic acid, a specific leukotriene biosynthesis inhibitor) on the thrombolytic efficacy of rt-PA. The guinea pig femoral artery was thrombotically occluded by photochemical reaction between rose bengal and green light. Thirty min after the occlusion, rt-PA was administered and the time (T1) for reopening of the vessel and the frequency of reocclusion (Fro) 24 h after thrombolysis were monitored. With rt-PA alone, T1 was 28 +/- 7 min (n = 10) and Fro was 70%. T1 was reduced to 9 and 20 min by a combination of rt-PA with vapiprost and argatroban respectively. Fro was reduced by all three adjuvants. Histological observations revealed extensive adherence of polymorphonuclear leucocytes to the damaged endothelium at the site of thrombolysis. It is concluded that thromboxane A2, thrombin and leucocytes are involved in reocclusion after thrombolysis. Topics: Adjuvants, Pharmaceutic; Animals; Antithrombins; Arginine; Biphenyl Compounds; Disease Models, Animal; Drug Therapy, Combination; Endothelium, Vascular; Femoral Artery; Fibrinolytic Agents; Guinea Pigs; Heptanoic Acids; Indoles; Leukotriene Antagonists; Male; Microscopy, Electron, Scanning; Neutrophils; Pipecolic Acids; Platelet Aggregation Inhibitors; Receptors, Thromboxane; Recombinant Proteins; Sulfonamides; Thrombolytic Therapy; Thrombosis; Tissue Plasminogen Activator | 1994 |
An orally active inhibitor of leukotriene synthesis accelerates healing in a rat model of colitis.
Leukotrienes (LTs) have been implicated as mediators of the inflammation and ulceration associated with ulcerative colitis and Crohn's disease. In the present study, the effects of a novel, orally active inhibitor of LT synthesis (MK-886) were examined in a rat model of chronic colitis. Colitis was induced by intracolonic administration of trinitrobenzenesulfonic acid. Colonic LTB4 synthesis was measured after incubation of tissue samples in vitro and by in vivo equilibrium dialysis. A single dose of MK-886 (10 mg/kg) significantly inhibited colonic LTB4 synthesis for greater than 24 h. Daily treatment with this dose significantly reduced colonic damage, as assessed macroscopically and histologically, when the treatment was performed 2 h before induction of colitis and daily thereafter for 1 wk, but not when treatment was performed during the second week after induction of colitis. A less marked beneficial effect of MK-886 was observed when the pretreatment dose was excluded, suggesting a role for LTs in the early events of the inflammatory process. Inhibition of LT synthesis during the first 24 h after induction of colitis did not alter the extent of infiltration of neutrophils into the colon, as measured by tissue myeloperoxidase activity. Daily treatment with sulfasalazine (100 mg/kg po) either during the first or second week after induction of colitis did not significantly affect the rates of healing. At the dose used, sulfasalazine only produced a transient inhibition of colonic LTB4 synthesis. This study therefore demonstrates that a specific, orally active inhibitor of LT synthesis can significantly accelerate healing in this animal model of colitis when the treatment is performed during the early phase of the inflammatory response. Topics: Administration, Oral; Animals; Colitis, Ulcerative; Colon; Disease Models, Animal; Indoles; Inflammation; Leukotriene B4; Male; Rats; Rats, Inbred Strains; Sulfasalazine; Trinitrobenzenesulfonic Acid | 1990 |