l-663536 and Brain-Ischemia

l-663536 has been researched along with Brain-Ischemia* in 2 studies

Other Studies

2 other study(ies) available for l-663536 and Brain-Ischemia

ArticleYear
Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices.
    Chemico-biological interactions, 2006, Nov-07, Volume: 163, Issue:3

    Arachidonic acid (AA), 5,8,11,14-eicosateraenoic acid is abundant, active and necessary in the human body. In the present study, we reported the neuroprotective effects and mechanism of arachidonic acid on hippocampal slices insulted by glutamate, NaN(3) or H(2)O(2)in vitro. Different types of models of brain injury in vitro were developed by 1mM glutamate, 10mM NaN(3) or 2mM H(2)O(2). After 30 min of preincubation with arachidonic acid or linoleic acid, hippocampal slices were subjected to glutamate, NaN(3) or H(2)O(2), then the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride method. Endogenous antioxidant enzymes activities (SOD, GSH-PX and catalase) in hippocampal slices were evaluated during the course of incubation. MK886 (5 microM; a noncompetitive inhibitor of proliferator-activated receptor [PPAR]alpha), BADGE (bisphenol A diglycidyl ether; 100 microM; an antagonist of PPARgamma) and cycloheximide (CHX; 30 microM; an inhibitor of protein synthesis) were tested for their effects on the neuroprotection afforded by arachidonic acid. Population spikes were recorded in randomly selected hippocapal slices. Arachidonic acid (1-10 microM) dose dependently protected hippocampal slices from glutamate and H(2)O(2) injury (P<0.01), and arachidonic acid (10 microM) can significantly improve the activities of Cu/Zn-SOD in hippocampal slices after 1h incubation. In addition, 10 microM arachidonic acid significantly increased the activity of Mn-SOD and catalase, and decreased the activities of Cu/Zn-SOD to control value after 3h incubation. These secondary changes of SOD during incubation can be reversed by indomethacine (10 microM; a nonspecific cyclooxygenase inhibitor) or AA 861 (20 microM; a 5-lipoxygenase inhibitor). Its neuroprotective effect was completely abolished by BADGE and CHX. These observations reveal that arachidonic acid can defense against oxidative stress by boosting the internal antioxidant system of hippocampal slices. Its neuroprotective effect may be mainly mediated by the activation of PPARgamma and synthesis of new protein in tissue.

    Topics: Animals; Arachidonic Acid; Benzhydryl Compounds; Benzoquinones; Brain Ischemia; Catalase; Cycloheximide; Epoxy Compounds; Glutathione Peroxidase; Hippocampus; Indoles; Indomethacin; Linoleic Acid; Lipoxygenase Inhibitors; Male; Neuroprotective Agents; Oxidative Stress; Protein Synthesis Inhibitors; Rats; Rats, Sprague-Dawley; Superoxide Dismutase

2006
Production of leukotrienes in a model of focal cerebral ischaemia in the rat.
    British journal of pharmacology, 2001, Volume: 133, Issue:8

    1. The aim of this work was to evaluate the role of leukotrienes in brain damage in vivo in a model of focal cerebral ischaemia in the rat, obtained by permanent occlusion of middle cerebral artery. 2. A significant (P < 0.01) elevation of LTC(4), LTD(4) and LTE(4) (cysteinyl-leukotrienes) levels occurred 4 h after ischaemia induction in the ipsilateral cortices of ischaemic compared to sham-operated animals (3998 +/- 475 and 897 +/- 170 fmol g(-1) tissue, respectively, P < 0.01). 3. The NMDA receptor antagonist MK-801 and the adenosine A(2A) receptor antagonist SCH 58261 were administered in vivo at doses known to reduce infarct size and compared with the leukotriene biosynthesis inhibitor MK-886. 4. MK-886 (0.3 and 2 mg kg(-1) i.v.) and MK-801 (3 mg kg(-1) i.p.) decreased cysteinyl-leukotriene levels (-78%, P < 0.05; -100%, P < 0.01; -92%, P < 0.01, respectively) 4 h after permanent occlusion of the middle cerebral artery, whereas SCH 58261 (0.01 mg kg(-1) i.v.) had no significant effects. 5. MK-886 (2 mg kg(-1) i.v.) was also able to significantly reduce the cortical infarct size by 30% (P < 0.05). 6. We conclude that cysteinyl-leukotriene formation is associated with NMDA receptor activation, and that it represents a neurotoxic event, the inhibition of which is able to reduce brain infarct area in a focal ischaemic event.

    Topics: Animals; Brain Ischemia; Cerebral Cortex; Cysteine; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Indoles; Leukotrienes; Lipoxygenase Inhibitors; Male; Neuroprotective Agents; Purinergic P1 Receptor Antagonists; Pyrimidines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Receptors, Purinergic P1; Triazoles

2001