kurarinone has been researched along with Cerebral-Hemorrhage* in 1 studies
1 other study(ies) available for kurarinone and Cerebral-Hemorrhage
Article | Year |
---|---|
Kurarinone alleviates hemin-induced neuroinflammation and microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization via regulating the IGF1/PI3K/Akt signaling.
Cerebral hemorrhage is a fatal disease that causes severe damage to local nerve function. The purpose of this research is to analyze the effect of kurarinone on hemin-induced neuroinflammation and neurotoxicity. In our study, according to the results of bioinformatics analysis, we hypothesized that kurarinone might modulate cerebral hemorrhage advancement via the insulin-like growth factor 1/phosphoinositide 3-kinase/protein kinase B (IGF1/PI3K/Akt) signaling. Kurarinone promoted M2 microglia polarization, and curbed M1 polarization and inflammation in human microglial cells (HMC3) cells with hemin treatment. Besides, kurarinone upregulated IGF1 expression and activated the PI3K/Akt signaling pathway in hemin-treated HMC3 cells. In addition, downregulation of IGF1 or inhibition of the PI3K/Akt signaling weakened the effects of kurarinone on microglia polarization and inflammation in HMC3 cells with hemin treatment. Kurarinone alleviated apoptosis and oxidative damage of SH-SY5Y cells co-cultured with hemin-treated HMC3 cells. In conclusion, kurarinone lessened hemin-induced neuroinflammation and microglia-mediated neurotoxicity by regulating microglial polarization through modulating the IGF1/PI3K/Akt signaling. These results delivered a new prospective therapeutic drug for the treatment of cerebral hemorrhage. Topics: Cerebral Hemorrhage; Hemin; Humans; Inflammation; Insulin-Like Growth Factor I; Microglia; Neuroblastoma; Neuroinflammatory Diseases; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction | 2022 |