kukoamine-a and Inflammation

kukoamine-a has been researched along with Inflammation* in 5 studies

Other Studies

5 other study(ies) available for kukoamine-a and Inflammation

ArticleYear
Kukoamine A protects mice against osteoarthritis by inhibiting chondrocyte inflammation and ferroptosis via SIRT1/GPX4 signaling pathway.
    Life sciences, 2023, Nov-01, Volume: 332

    Osteoarthritis (OA) is one of the common chronic degenerative joint diseases, characterized by cartilage damage, subchondral bone changes, osteophyte formation, and synovitis. Kukoamine A (KuKA) is a bioactive compound isolated from Lycium chinense which is known as its anti-inflammatory activity. In this study, we detected the regulatory role of KuKA on OA both in vivo and in vitro.. Mouse chondrocytes were cultured and mouse model of OA was established. Inflammatory mediator was measured by ELISA. The signaling pathway was tested by western blot analysis.. KuKA inhibited IL-1β-induced PGE2 and NO production and iNOS and COX-2 expression. IL-1β-induced MMP1 and MMP3 production was attenuated by KuKA. IL-1β-induced MDA, iron, and ROS were alleviated by KuKA. Meanwhile, GSH content, GPX4, Ferritin, SIRT1, Nrf2, and HO-1 expression were upregulated by KuKA. Furthermore, the inhibitory role of KuKA on IL-1β-induced inflammation, MMPs production, and ferroptosis were reversed by SIRT1 inhibitor. In vivo, KuKA could attenuate OA development in mouse model. KuKA markedly alleviated MMP1, MMP3, iNOS, and COX2 expression in OA mice.. In conclusion, KuKA could inhibit OA development through suppressing chondrocyte inflammation and ferroptosis via SIRT1/GPX4 signaling pathway.

    Topics: Animals; Cells, Cultured; Chondrocytes; Ferroptosis; Inflammation; Interleukin-1beta; Matrix Metalloproteinase 1; Matrix Metalloproteinase 3; Mice; NF-kappa B; Osteoarthritis; Signal Transduction; Sirtuin 1

2023
Kukoamine A attenuates lipopolysaccharide-induced apoptosis, extracellular matrix degradation, and inflammation in nucleus pulposus cells by activating the P13K/Akt pathway.
    Bioengineered, 2022, Volume: 13, Issue:4

    Intervertebral disc degeneration (IDD) is the leading cause of back, neck, and radicular pain. This study aims to look at the roles of Kukoamine A (KuA) in nucleus pulposus cells (NPCs) of IDD and its related potential mechanisms. Cell viability of NPCs in the control, lipopolysaccharide (LPS) and LPS+KuA groups was firstly detected by cell counting kit (CCK)-8. Meanwhile, the protein expression of collagen II in LPS-induced NPCs was measured by western blot. Then, the experiments following the treatment of KuA in LPS-induced NPCs included cell proliferation assessment by 5-ethynyl-2'-deoxyuridine (EdU) kit, cell apoptosis and extracellular matrix degradation (ECM) analysis by Terminal dUTP nick-end labeling (TUNEL) and western blot, the detection of inflammatory cytokines by western blot and enzyme-linked immunosorbent assay (ELISA), P13K/Akt pathway-related protein levels analysis by western blot. Finally, after the addition of P13K/Akt pathway inhibitor LY294002, cell apoptosis, ECM and inflammation in KuA-treated NPCs induced by LPS were again examined by the same methods. Results indicated that KuA prevented loss of cell viability and attenuated the apoptosis, ECM, and inflammation in LPS-induced NPCs. Furthermore, western blot experiment verified the activation of KuA on P13K/Akt pathway in LPS-induced NPCs. However, inhibition of P13K/Akt pathway reversed the roles of KuA in LPS-induced NPCs. Thus, KuA attenuates LPS-induced apoptosis, ECM and inflammation in LPS-induced NPCs by activating the P13K/Akt pathway.

    Topics: Apoptosis; Cells, Cultured; Extracellular Matrix; Humans; Inflammation; Intervertebral Disc Degeneration; Lipopolysaccharides; Nucleus Pulposus; Proto-Oncogene Proteins c-akt; Spermine

2022
Kukoamine A inhibits C-C motif chemokine receptor 5 to attenuate lipopolysaccharide-induced lung injury.
    Drug development research, 2022, Volume: 83, Issue:6

    The aim of this study was to elucidate the mechanism underlying the effects of Kukoamine A (KuA) treatment on endotoxin-induced lung injury/inflammation. The study was performed in lipopolysaccharide (LPS)-exposed mouse models of lung injury and LPS-induced alveolar epithelial cell model. Relevant kits were used to detect levels of inflammation-related indicators, oxidative stress indicators, and mitochondrial function. Hematoxylin and eosin staining was to detect lung injury. Then, C-C motif chemokine receptor 5 (CCR5) overexpression plasmid was transfected into alveolar epithelial cells to investigate the mechanism of KuA in lung injury. The results showed that LPS induction increased the expression of inflammatory factors, oxidative stress markers, and mitochondrial dysfunction in both animal and cellular models. In the mouse model, KuA treatment improved lung tissue injury, decreased wet-to-dry ratio and MPO levels, reduced the expression of inflammatory factors, and ameliorated oxidative stress and mitochondrial dysfunction. The protective effect of KuA in the cell model remained whereas was markedly reversed after CCR5 overexpression. Taken together, KuA might improve LPS-induced lung injury by inhibiting CCR5. This might also provide a novel theory for KuA in the treatment of lung injury.

    Topics: Acute Lung Injury; Animals; Disease Models, Animal; Inflammation; Lipopolysaccharides; Lung; Mice; Oxidative Stress; Receptors, CCR5; Receptors, Chemokine; Spermine

2022
Kukoamine A activates Akt/GSK-3β signaling pathway to inhibit oxidative stress and relieve myocardial ischemia-reperfusion injury.
    Acta cirurgica brasileira, 2022, Volume: 37, Issue:4

    Myocardial ischemia/reperfusion (MI/R) injury refers to a pathological condition of treatment of myocardial infarction. Oxidative stress and inflammation are believed to be important mechanisms mediating MI/R injury. Kukoamine A (KuA), a sperm, is the main bioactive component extracted from the bark of goji berries. In this study, we wanted to investigate the possible effects of KuA on MI/R injury.. In this experiment, all rats were divided into sham operation group, MI/R group, KuA 10 mg + MI/R group, KuA 20 mg + MI/R group. After 120 min of ischemia/reperfusion treatment, left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximal rates of rising and fall of left ventricular pressure (±dp/dtmax), and ischemic area were detected. Serum samples of rats in each group were collected. The enzyme activities of catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), levels of malondialdehyde (MDA), CK muscle/brain (CK-MB), tumor necrosis factor (TNF), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were detected using enzyme-linked immunosorbent assay (ELISA). The apoptosis of myocardium in each group was detected according to the instructions of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expressions of mammalian target of glycogen synthase kinase-3β (GSH-3β) and protein kinase B (Akt) mRNA level in myocardial tissues were detected via reverse transcription-polymerase chain reaction (RT-PCR).. MI/R rats showed a significant increase in oxidative stress and inflammation. In addition, we showed that KuA significantly improved the myocardial function such as LVSP, left ventricular ejection fraction, +dp/dt, and -dp/dt. Here, it attenuated dose-dependent histological damage in ischemia-reperfused myocardium, which is associated with the enzyme activities of SOD, GSH-PX, and levels of MDA, IL-6, TNF-α, L-1β.. KuA inhibited gene expression of Akt/GSK-3β, inflammation, oxidative stress and improved MR/I injury. Taken together, our results allowed us to better understand the pharmacological activity of KuA against MR/I injury.

    Topics: Animals; Glutathione Peroxidase; Glycogen Synthase Kinase 3 beta; Inflammation; Interleukin-6; Male; Mammals; Myocardial Reperfusion Injury; Myocardium; Oxidative Stress; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Semen; Signal Transduction; Spermine; Stroke Volume; Superoxide Dismutase; Ventricular Function, Left

2022
Kukoamine A Prevents Radiation-Induced Neuroinflammation and Preserves Hippocampal Neurogenesis in Rats by Inhibiting Activation of NF-κB and AP-1.
    Neurotoxicity research, 2017, Volume: 31, Issue:2

    Impaired hippocampal neurogenesis and neuroinflammation are involved in the pathogenesis of radiation-induced brain injury. Kukoamine A (KuA) was demonstrated to have neuroprotective effects through inhibiting oxidative stress and apoptosis after whole-brain irradiation (WBI) in rats. The aim of this study was to investigate whether administration of KuA would prevent radiation-induced neuroinflammation and the detrimental effect on hippocampal neurogenesis. For this study, male Wistar rats received either sham irradiation or WBI (30 Gy single dose of X-rays) followed by the immediate injection of either KuA or vehicle intravenously. The dose of KuA was 5, 10, and 20 mg/kg, respectively. The levels of pro-inflammatory cytokines were assayed by ELISA kits. The newborn neurons were detected by 5-bromo-2-deoxyuridine (BrdU)/neuronal nuclei (NeuN) double immunofluorescence. Microglial activation was measured by Iba-1 immunofluorescence. The expression of Cox-2 and the activation of nuclear factor κB (NF-κB), activating protein 1(AP-1), and PPARδ were evaluated by western blot. WBI led to a significant increase in the level of TNF-α, IL-1β, and Cox-2, and it was alleviated by KuA administration. KuA attenuated microglial activation in rat hippocampus after WBI. Neurogenesis impairment induced by WBI was ameliorated by KuA. Additionally, KuA alleviated the increased translocation of NF-κB p65 subunit and phosphorylation of c-jun induced by WBI and elevated the expression of PPARδ. These data indicate that KuA could ameliorate the neuroinflammatory response and protect neurogenesis after WBI, partially through regulating the activation of NF-κB, AP-1, and PPARδ.

    Topics: Animals; Brain; Cyclooxygenase 2; Cytokines; Dose-Response Relationship, Drug; Hippocampus; Inflammation; Male; Microglia; Neurogenesis; Neuroprotective Agents; NF-kappa B; Phosphorylation; PPAR delta; Proto-Oncogene Proteins c-jun; Radiation Injuries, Experimental; Rats; Spermine; Transcription Factor AP-1

2017