ku-55933 has been researched along with Glioblastoma* in 3 studies
3 other study(ies) available for ku-55933 and Glioblastoma
Article | Year |
---|---|
Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase.
Resistance to radiotherapy in glioblastoma (GBM) is an important clinical problem and several authors have attributed this to a subpopulation of GBM cancer stem cells (CSCs) which may be responsible for tumour recurrence following treatment. It is hypothesised that GBM CSCs exhibit upregulated DNA damage responses and are resistant to radiation but the current literature is conflicting. We investigated radioresistance of primary GBM cells grown in stem cell conditions (CSC) compared to paired differentiated tumour cell populations and explored the radiosensitising effects of the ATM inhibitor KU-55933. We report that GBM CSCs are radioresistant compared to paired differentiated tumour cells as measured by clonogenic assay. GBM CSC's display upregulated phosphorylated DNA damage response proteins and enhanced activation of the G2/M checkpoint following irradiation and repair DNA double strand breaks (DSBs) more efficiently than their differentiated tumour cell counterparts following radiation. Inhibition of ATM kinase by KU-55933 produced potent radiosensitisation of GBM CSCs (sensitiser enhancement ratios 2.6-3.5) and effectively abrogated the enhanced DSB repair proficiency observed in GBM CSCs at 24 h post irradiation. G2/M checkpoint activation was reduced but not abolished by KU-55933 in GBM CSCs. ATM kinase inhibition overcomes radioresistance of GBM CSCs and, in combination with conventional therapy, has potential to improve outcomes for patients with GBM. Topics: Ataxia Telangiectasia Mutated Proteins; Female; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Glioblastoma; Humans; M Phase Cell Cycle Checkpoints; Male; Morpholines; Neoplasm Proteins; Neoplastic Stem Cells; Pyrones; Radiation Tolerance; Radiation-Sensitizing Agents; Tumor Cells, Cultured | 2015 |
ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells.
Ataxia telangiectasia mutated (ATM) kinase is critical in sensing and repairing DNA double-stranded breaks (DSBs) such as those induced by temozolomide (TMZ). ATM deficiency increases TMZ sensitivity, which suggests that ATM inhibitors may be effective TMZ sensitizing agents. In this study, the TMZ sensitizing effects of 2 ATM specific inhibitors were studied in established and xenograft-derived glioblastoma (GBM) lines that are inherently sensitive to TMZ and derivative TMZ-resistant lines. In parental U251 and U87 glioma lines, the addition of KU-55933 to TMZ significantly increased cell killing compared to TMZ alone [U251 survival: 0.004 ± 0.0015 vs. 0.08 ± 0.01 (p < 0.001), respectively, and U87 survival: 0.02 ± 0.005 vs. 0.04 ± 0.002 (p < 0.001), respectively] and also elevated the fraction of cells arrested in G2/M [U251 G2/M fraction: 61.8 ± 1.1 % vs. 35 ± 0.8 % (p < 0.001), respectively, and U87 G2/M fraction 25 ± 0.2 % vs.18.6 ± 0.4 % (p < 0.001), respectively]. In contrast, KU-55933 did not sensitize the resistant lines to TMZ, and neither TMZ alone or combined with KU-55933 induced a G2/M arrest. While KU-55933 did not enhance TMZ induced Chk1/Chk2 activation, it increased TMZ-induced residual γ-H2AX foci in the parental cells but not in the TMZ resistant cells. Similar sensitization was observed with either KU-55933 or CP-466722 combined with TMZ in GBM12 xenograft line but not in GBM12TMZ, which is resistant to TMZ due to MGMT overexpression. These findings are consistent with a model where ATM inhibition suppresses the repair of TMZ-induced DSBs in inherently TMZ-sensitive tumor lines, which suggests an ATM inhibitor potentially could be deployed with an improvement in the therapeutic window when combined with TMZ. Topics: Animals; Antineoplastic Agents, Alkylating; Apoptosis; Ataxia Telangiectasia Mutated Proteins; Blotting, Western; Brain Neoplasms; Cell Cycle Proteins; Cell Division; Cell Proliferation; Dacarbazine; DNA Damage; DNA-Binding Proteins; Drug Resistance, Neoplasm; Flow Cytometry; G2 Phase; Glioblastoma; Humans; Immunoenzyme Techniques; Mice; Morpholines; Neurons; Protein Serine-Threonine Kinases; Pyrones; Temozolomide; Tumor Cells, Cultured; Tumor Stem Cell Assay; Tumor Suppressor Proteins | 2012 |
Cytotoxic effects of temozolomide and radiation are additive- and schedule-dependent.
Despite aggressive therapy comprising radical radiation and temozolomide (TMZ) chemotherapy, the prognosis for patients with glioblastoma multiforme (GBM) remains poor, particularly if tumors express O(6)-methylguanine-DNA-methyltransferase (MGMT). The interactions between radiation and TMZ remain unclear and have important implications for scheduling and for developing strategies to improve outcomes.. Factors determining the effects of combination therapy on clonogenic survival, cell-cycle checkpoint signaling and DNA repair were investigated in four human glioma cell lines (T98G, U373-MG, UVW, U87-MG).. Combining TMZ and radiation yielded additive cytotoxicity, but only when TMZ was delivered 72 h before radiation. Radiosensitization was not observed. TMZ induced G2/M cell-cycle arrest at 48-72 h, coincident with phosphorylation of Chk1 and Chk2. Additive G2/M arrest and Chk1/Chk2 phosphorylation was only observed when TMZ preceded radiation by 72 h. The ataxia-telangiectasia mutated (ATM) inhibitor KU-55933 increased radiation sensitivity and delayed repair of radiation-induced DNA breaks, but did not influence TMZ effects. The multiple kinase inhibitor caffeine enhanced the cytotoxicity of chemoradiation and exacerbated DNA damage.. TMZ is not a radiosensitizing agent but yields additive cytotoxicity in combination with radiation. Our data indicate that TMZ treatment should commence at least 3 days before radiation to achieve maximum benefit. Activation of G2/M checkpoint signaling by TMZ and radiation has a cytoprotective effect that can be overcome by dual inhibition of ATM and ATR. More specific inhibition of checkpoint signaling will be required to increase treatment efficacy without exacerbating toxicity. Topics: Antineoplastic Agents, Alkylating; Ataxia Telangiectasia Mutated Proteins; Caffeine; Cell Cycle Proteins; Cell Line, Tumor; Checkpoint Kinase 1; Checkpoint Kinase 2; Combined Modality Therapy; Dacarbazine; DNA Repair; DNA-Binding Proteins; Drug Administration Schedule; G2 Phase; Glioblastoma; Humans; Morpholines; Neoplasm Proteins; O(6)-Methylguanine-DNA Methyltransferase; Phosphorylation; Protein Kinases; Protein Serine-Threonine Kinases; Pyrones; Radiation Tolerance; Temozolomide; Tumor Stem Cell Assay; Tumor Suppressor Proteins | 2009 |