ku-0063794 has been researched along with Prostatic-Neoplasms* in 3 studies
3 other study(ies) available for ku-0063794 and Prostatic-Neoplasms
Article | Year |
---|---|
Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines.
Although the rictor-mTOR complex (mTORC2) has been shown to act as phosphoinositide-dependent kinase (PDK)2 in many cell types, other kinases have also been implicated in mediating Ser473-Akt phosphorylation. Here, we demonstrated the cell line specificity of integrin-linked kinase (ILK) versus mTORC2 as PDK2 in LNCaP and PC-3 prostate and MDA-MB-468 breast cancer cells, of which the PTEN-negative status allowed the study of Ser473-Akt phosphorylation independent of external stimulation. PC-3 and MDA-MB-468 cells showed upregulated ILK expression relative to LNCaP cells, which expressed a high abundance of mTOR. Exposure to Ku-0063794, a second-generation mTOR inhibitor, decreased Ser473-Akt phosphorylation in LNCaP cells, but not in PC-3 or MDA-MB-468 cells. In contrast, treatment with T315, a novel ILK inhibitor, reduced the phosphorylation of Ser473-Akt in PC-3 and MDA-MB-468 cells without affecting that in LNCaP cells. This cell line specificity was verified by comparing Ser473-Akt phosphorylation status after genetic knockdown of rictor, ILK, and other putative Ser-473-Akt kinases. Genetic knockdown of rictor, but not ILK or the other kinases examined, inhibited Ser473-Akt phosphorylation in LNCaP cells. Conversely, PC-3 and MDA-MB-468 cells were susceptible to the effect of ILK silencing on Ser473-Akt phosphorylation, while knockdown of rictor or any of the other target kinases had no appreciable effect. Co-immunoprecipitation analysis demonstrated the physical interaction between ILK and Akt in PC-3 cells, and T315 blocked ILK-mediated Ser473 phosphorylation of bacterially expressed Akt. ILK also formed complexes with rictor in PC-3 and MDA-MB-468 cells that were disrupted by T315, but such complexes were not observed in LNCaP cells. In the PTEN-functional MDA-MB-231 cell line, both T315 and Ku-0063794 suppressed EGF-induced Ser473-Akt phosphorylation. Inhibition of ILK by T315 or siRNA-mediated knockdown suppressed epithelial-mesenchymal transition in MDA-MB-468 and PC-3 cells. Thus, we hypothesize that ILK might bestow growth advantage and metastatic potential in the course of tumor progression. Topics: Anilides; Benzoates; Breast Neoplasms; Carrier Proteins; Cell Line, Tumor; Cell Survival; Epithelial-Mesenchymal Transition; Female; Gene Expression Regulation, Neoplastic; Humans; Male; Mechanistic Target of Rapamycin Complex 2; Morpholines; Multiprotein Complexes; Phosphorylation; Prostatic Neoplasms; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Pyrimidines; Rapamycin-Insensitive Companion of mTOR Protein; Serine; TOR Serine-Threonine Kinases; Up-Regulation | 2013 |
Inhibition of mTORC1 kinase activates Smads 1 and 5 but not Smad8 in human prostate cancer cells, mediating cytostatic response to rapamycin.
Although hyperactivated mTOR is well recognized as being pivotal to prostate cancer growth and progression, the underlying mechanisms by which it promotes such responses remain incompletely understood. Here, we show that rapamycin activates Smads 1 and 5 in human prostate cancer cells and tissues through blocking mTORC1 kinase. Small hairpin RNA-based gene silencing and gene overexpression approaches reveal that Smads 1 and 5 mediate, whereas Smad8 represses, rapamycin-induced cell death and expression of the bone morphogenetic protein (BMP) transcriptional target Id1 in human prostate cancer cell lines. Moreover, such phospho-Smad1/5-mediated rapamycin responses were blocked by LDN-193189 (a BMPRI kinase inhibitor) or Noggin (a BMP antagonist) in LNCaP prostate cancer cells. Likewise, the mTOR kinase inhibitors Ku-0063794 and WYE-354 each enhanced phosphorylation of Smad1/5. Intriguingly, silencing raptor alone enhanced, whereas silencing rictor repressed, the phosphorylation of Smad1/5, indicating that mTORC1 represses, whereas mTORC2 activates, BMP signaling. Immunohistochemical analysis showed increased levels of phospho-Smad1/5 concomitant with suppression of phospho-S6 and survivin levels in PC3 human prostate cancer xenografts in athymic mice administered rapamycin (intraperitoneally, 5 mg/kg/d, 2-6 days). Moreover, we show that compared with prostate tumor tissue from untreated patients, levels of phospho-Smad1/5 were significantly elevated in the prostate tumor tissue of patients with high-risk prostate cancer who received 8 weeks of the rapalog everolimus as part of a neoadjuvant clinical trial before undergoing local definitive therapy by radical prostatectomy. Taken together, our data implicate Smads 1, 5 and 8 as potential prognostic markers and therapeutic targets for mTOR inhibition therapy of prostate cancer. Topics: Animals; Blotting, Western; Bone Morphogenetic Proteins; Cell Line, Tumor; Cell Survival; Cytostatic Agents; Gene Expression Regulation, Neoplastic; Humans; Immunohistochemistry; Male; Mice; Mice, Nude; Morpholines; Phosphorylation; Prostatic Neoplasms; Pyrazoles; Pyrimidines; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Signal Transduction; Sirolimus; Smad1 Protein; Smad5 Protein; Smad8 Protein; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2012 |
Threonine-120 phosphorylation regulated by phosphoinositide-3-kinase/Akt and mammalian target of rapamycin pathway signaling limits the antitumor activity of mammalian sterile 20-like kinase 1.
Mst1/Stk4, a hippo-like serine-threonine kinase, is implicated in many cancers, including prostate cancer. However, the mechanisms regulating Mst1 remain obscure. Here, we characterized the effects of phospho-Thr-120 on Mst1 in prostate cancer cells. We demonstrated that phospho-Thr-120 did not alter the nuclear localization or cleavage of Mst1 in a LNCaP or castration-resistant C4-2 prostate tumor cell model, as revealed by a mutagenesis approach. Phospho-Thr-120 appeared to be specific to cancer cells and predominantly localized in the nucleus. In contrast, phospho-Thr-183, a critical regulator of Mst1 cell death, was exclusively found in the cytoplasm. As assessed by immunohistochemistry, a similar distribution of phospho-Mst1-Thr-120/Thr-183 was also observed in a prostate cancer specimen. In addition, the blockade of PI3K signaling by a small molecule inhibitor, LY294002, increased cytoplasmic phospho-Mst1-Thr-183 without having a significant effect on nuclear phospho-Mst1-Thr-120. However, the attenuation of mammalian target of rapamycin (mTOR) activity by a selective pharmacologic inhibitor, Ku0063794 or CCI-779, caused the up-regulation of nuclear phospho-Mst1-Thr-120 without affecting cytoplasmic phospho-Mst1-Thr-183. This suggests that PI3K and mTOR pathway signaling differentially regulate phospho-Mst1-Thr-120/Thr-183. Moreover, mutagenesis and RNAi data revealed that phospho-Thr-120 resulted in C4-2 cell resistance to mTOR inhibition and reduced the Mst1 suppression of cell growth and androgen receptor-driven gene expression. Collectively, these findings indicate that phospho-Thr-120 leads to the loss of Mst1 functions, supporting cancer cell growth and survival. Topics: Animals; Blotting, Western; Cell Line, Tumor; Cell Nucleus; Chromones; HEK293 Cells; HeLa Cells; Humans; Intracellular Signaling Peptides and Proteins; Male; Mice; Mice, Nude; Morpholines; Neoplasms, Experimental; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Prostatic Neoplasms; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-akt; Pyrimidines; RNA Interference; Signal Transduction; Sirolimus; Threonine; TOR Serine-Threonine Kinases; Transplantation, Heterologous; Tumor Burden | 2012 |