krp-203 has been researched along with Disease-Models--Animal* in 5 studies
5 other study(ies) available for krp-203 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice.
Sphingosine 1-phosphate (S1P) partly accounts for antiatherogenic properties of high-density lipoproteins. We previously demonstrated that FTY720, a synthetic S1P analog targeting all S1P receptors but S1P receptor type 2, inhibits murine atherosclerosis. Here, we addressed the identity of S1P receptor mediating atheroprotective effects of S1P.. Low-density lipoprotein receptor-deficient mice on cholesterol-rich diet were given selective S1P receptor type 1 agonist KRP-203 (3.0 mg/kg per day; 6 and 16 weeks). KRP-203 substantially reduced atherosclerotic lesion formation without affecting plasma lipid concentrations. However, KRP-203 induced lymphopenia, reduced total (CD4(+), CD8(+)) and activated (CD69(+)/CD8(+), CD69(+)/CD4(+)) T cells in peripheral lymphoid organs, and interfered with lymphocyte function, as evidenced by decreased T-cell proliferation and interleukin-2 and interferon-γ production in activated splenocytes. Cyto- and chemokine (tumor necrosis factor-α, regulated and normal T cell expressed and secreted) levels in plasma and aortas were reduced by KRP-203 administration. Moreover, macrophages from KRP-203-treated mice showed reduced expression of activation marker MCH-II and poly(I:C)-elicited production of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6. In vitro studies demonstrated that KRP-203 reduced tumor necrosis factor-α, interleukin-6, and interferon-γ-induced protein-10 production; IκB and signal transducer and activator of transcription-1 phosphorylation; and nuclear factor κB and signal transducer and activator of transcription-1 activation in poly(I:C)-, lipopolysaccharide-, or interferon-γ-stimulated bone marrow macrophages, respectively.. Present results demonstrate that activation of S1P signaling pathways inhibit atherosclerosis by modulating lymphocyte and macrophage function and suggest that S1P receptor type 1 at least partially mediates antiatherogenic effects of S1P. Topics: Animals; Aorta; Aortic Diseases; Atherosclerosis; Biomarkers; Cardiovascular Agents; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Dendritic Cells; Disease Models, Animal; Endothelial Cells; Humans; Inflammation; Inflammation Mediators; Lipids; Lymphocyte Activation; Lymphopenia; Macrophage Activation; Macrophages; Mice; Mice, Knockout; Receptors, LDL; Receptors, Lysosphingolipid; Signal Transduction; Sulfhydryl Compounds; U937 Cells | 2013 |
FTY720/fingolimod, a sphingosine analogue, reduces amyloid-β production in neurons.
Sphingosine-1-phosphate (S1P) is a pluripotent lipophilic mediator working as a ligand for G-protein coupled S1P receptors (S1PR), which is currently highlighted as a therapeutic target for autoimmune diseases including relapsing forms of multiple sclerosis. Sphingosine related compounds, FTY720 and KRP203 known as S1PR modulators, are phosphorylated by sphingosine kinase 2 (SphK2) to yield the active metabolites FTY720-P and KRP203-P, which work as functional antagonists for S1PRs. Here we report that FTY720 and KRP203 decreased production of Amyloid-β peptide (Aβ), a pathogenic proteins causative for Alzheimer disease (AD), in cultured neuronal cells. Pharmacological analyses suggested that the mechanism of FTY720-mediated Aβ decrease in cells was independent of known downstream signaling pathways of S1PRs. Unexpectedly, 6-days treatment of APP transgenic mice with FTY720 resulted in a decrease in Aβ40, but an increase in Aβ42 levels in brains. These results suggest that S1PR modulators are novel type of regulators for Aβ metabolisms that are active in vitro and in vivo. Topics: Amyloid beta-Peptides; Amyloid Precursor Protein Secretases; Animals; Brain; Disease Models, Animal; Fingolimod Hydrochloride; Humans; Mice; Mice, Inbred BALB C; Neurons; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Signal Transduction; Sphingosine; Sulfhydryl Compounds | 2013 |
A novel sphingosine-1-phosphate receptor agonist KRP-203 attenuates rat autoimmune myocarditis.
Sphingosine-1-phosphate (S1P) is an active sphingolipid metabolite that exerts important biological effects. Recently, we demonstrated that KRP-203 is a novel S1P receptor agonist that can alter lymphocyte homing and act as an immunomodulating agent. We investigated the efficacy of KRP-203 in the treatment of rat experimental autoimmune myocarditis. KRP-203 significantly attenuated the inflammation area, heart weight/body weight ratio, and left ventricular function. Immunohistochemical analysis and RT-PCR revealed that KRP-203 significantly decreased the infiltration of macrophages and CD4 T cells in the myocardium and the expression of inflammatory cytokines. Flow cytometric analysis revealed that treatment with KRP-203 effectively reduced the number of peripheral CD4 and CD8 T cells but not that of B cells and granulocytes. Further, late KRP-203 treatment was effective even against established EAM. These results demonstrate the therapeutic potential of KRP-203 for the treatment of human myocarditis and provide new insights into the pathogenesis of this disease. Topics: Animals; Autoimmune Diseases; Body Weight; CD4-Positive T-Lymphocytes; Cytokines; Disease Models, Animal; Echocardiography; Flow Cytometry; Immunohistochemistry; Inflammation; Leukocytes; Male; Myocarditis; Rats; Rats, Inbred Lew; Receptors, Lysosphingolipid; Sulfhydryl Compounds | 2007 |
Sphingosine-1-phosphate receptor agonists suppress concanavalin A-induced hepatic injury in mice.
T cell-mediated immune responses play a critical role in a variety of liver injuries including autoimmune hepatitis. Injection of concanavalin A (Con A) into mice mimics the histological and pathological phenotype of T cell-mediated hepatitis. Recent advances in host immune control of organ transplantation include the development of sphingosine-1-phosphate (S1P) receptor agonists such as FTY720, which alter lymphocyte homing but do not suppress host general immunity. Herein we examined the effect of the new S1P receptor agonist KRP-203 on the Con A-induced liver damage model. In normal liver lymphocytes of BALB/c mice, both FTY720 and KRP203 promoted lymphocyte sequestering from the liver to secondary lymph nodes and significantly reduced the number of liver lymphocytes (p<0.05). Based on this observation, KRP203 was employed in the Con A-induced hepatitis model. KRP203 markedly reduced the number of CD4(+) lymphocytes that infiltrate Con A-treated liver (p<0.05) and successfully reduced serum transaminase elevation (p=0.017), therefore protecting mice from Con A-induced liver injury. Interestingly this homing modulation less occurs in natural hepatic T cell homing through the chemokine receptor, CXCR4. Therefore, S1P receptor agonists preferentially target CXCR4(+)CD4(+) peripheral blood T lymphocytes and suppress the occurrence of Con A-induced hepatitis, suggesting their therapeutic usefulness against T cell-mediated hepatic injury. Topics: Animals; Chemical and Drug Induced Liver Injury; Concanavalin A; Disease Models, Animal; Dose-Response Relationship, Drug; Fingolimod Hydrochloride; Liver; Lymphocytes; Male; Mice; Mice, Inbred BALB C; Propylene Glycols; Receptors, Lysosphingolipid; Sphingosine; Sulfhydryl Compounds; Treatment Outcome | 2006 |