krp-203 has been researched along with Aortic-Diseases* in 2 studies
2 other study(ies) available for krp-203 and Aortic-Diseases
Article | Year |
---|---|
KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice.
Sphingosine 1-phosphate (S1P) partly accounts for antiatherogenic properties of high-density lipoproteins. We previously demonstrated that FTY720, a synthetic S1P analog targeting all S1P receptors but S1P receptor type 2, inhibits murine atherosclerosis. Here, we addressed the identity of S1P receptor mediating atheroprotective effects of S1P.. Low-density lipoprotein receptor-deficient mice on cholesterol-rich diet were given selective S1P receptor type 1 agonist KRP-203 (3.0 mg/kg per day; 6 and 16 weeks). KRP-203 substantially reduced atherosclerotic lesion formation without affecting plasma lipid concentrations. However, KRP-203 induced lymphopenia, reduced total (CD4(+), CD8(+)) and activated (CD69(+)/CD8(+), CD69(+)/CD4(+)) T cells in peripheral lymphoid organs, and interfered with lymphocyte function, as evidenced by decreased T-cell proliferation and interleukin-2 and interferon-γ production in activated splenocytes. Cyto- and chemokine (tumor necrosis factor-α, regulated and normal T cell expressed and secreted) levels in plasma and aortas were reduced by KRP-203 administration. Moreover, macrophages from KRP-203-treated mice showed reduced expression of activation marker MCH-II and poly(I:C)-elicited production of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6. In vitro studies demonstrated that KRP-203 reduced tumor necrosis factor-α, interleukin-6, and interferon-γ-induced protein-10 production; IκB and signal transducer and activator of transcription-1 phosphorylation; and nuclear factor κB and signal transducer and activator of transcription-1 activation in poly(I:C)-, lipopolysaccharide-, or interferon-γ-stimulated bone marrow macrophages, respectively.. Present results demonstrate that activation of S1P signaling pathways inhibit atherosclerosis by modulating lymphocyte and macrophage function and suggest that S1P receptor type 1 at least partially mediates antiatherogenic effects of S1P. Topics: Animals; Aorta; Aortic Diseases; Atherosclerosis; Biomarkers; Cardiovascular Agents; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Dendritic Cells; Disease Models, Animal; Endothelial Cells; Humans; Inflammation; Inflammation Mediators; Lipids; Lymphocyte Activation; Lymphopenia; Macrophage Activation; Macrophages; Mice; Mice, Knockout; Receptors, LDL; Receptors, Lysosphingolipid; Signal Transduction; Sulfhydryl Compounds; U937 Cells | 2013 |
Change from cyclosporine to combination therapy of mycophenolic acid with the new sphingosine-1-phosphate receptor agonist, KRP-203, prevents host nephrotoxicity and transplant vasculopathy in rats.
Replacement of calcineurin inhibitor (CI) with anti-metabolic agents in transplant patients with CI-induced nephrotoxicity is performed clinically and improves renal function, but increases the risk of rejection. We investigated whether the change from cyclosporine (CsA) to a limited dose of mycophenolic acid (MPA) together with a new sphingosine-1-phosphate (S1P) receptor agonist, KRP-203, is sufficient to prevent both transplant vasculopathy and CsA-induced nephrotoxicity.. Orthotopic aortic transplantation was conducted in a high-responder rat combination of Dark Agouti (DA; major histocompatibility complex [MHC] haplotype RT-1a) to Lewis (RT-1(l)). After CsA administration (15 mg/kg/day) for 2 weeks, the recipients were divided into the following treatment groups for 6 weeks: MPA (10 mg/kg); KRP-203 (KRP; 1 mg/kg); and MPA + KRP. Serum creatinine (Cr), arteriolar hyalinosis and expression of transforming growth factor (TGF)-beta1 in the recipient kidney were examined as parameters indicating nephrotoxicity. Intimal hyperplasia was assessed by vascular occlusion, and graft-infiltrated cells were semi-quantitatively evaluated histologically and then characterized immunohistochemically.. Continuous CsA treatment attenuated intimal hyperplasia and cell infiltration (2.9 +/- 0.3% and 0.4 +/- 0.1; p < 0.01 vs vehicle), but increased Cr and hyalinosis (0.43 +/- 0.03 mg/dl and 57.2 +/- 0.4%; p < 0.01) with upregulated TGF-beta1. Replacement of CsA by MPA or KRP treatment alone improved nephrotoxicity, but worsened intimal hyperplasia and cell infiltration. Conversion to MPA + KRP treatment prevented nephrotoxicity (Cr, 0.32 +/- 0.02 mg/dl; hyalinosis, 5.6 +/- 1.3%; p < 0.01 vs CsA) and markedly suppressed intimal hyperplasia and cell infiltration (3.6 +/- 1.2% and 1.0 +/- 0.3; p = not significant vs CsA), with reduced T-cell infiltrates in the graft.. Changing from CsA to a combined therapy of MMF with S1P agonist is a promising strategy in clinical transplantation to overcome CI-induced nephrotoxicity and chronic rejection. Topics: Animals; Aorta; Aortic Diseases; Arterial Occlusive Diseases; Blood Cell Count; Cyclosporine; Drug Therapy, Combination; Hyperplasia; Immunohistochemistry; Immunosuppressive Agents; Kidney Diseases; Macrophages; Male; Mycophenolic Acid; Rats; Rats, Inbred Strains; Receptors, Lysosphingolipid; Retreatment; Sulfhydryl Compounds; T-Lymphocytes; Transplantation, Homologous; Tunica Intima | 2006 |