krn-7000 and Fibrosis

krn-7000 has been researched along with Fibrosis* in 2 studies

Other Studies

2 other study(ies) available for krn-7000 and Fibrosis

ArticleYear
α-Galactosylceramide and its analog OCH differentially affect the pathogenesis of ISO-induced cardiac injury in mice.
    Acta pharmacologica Sinica, 2020, Volume: 41, Issue:11

    Immunotherapies for cancers may cause severe and life-threatening cardiotoxicities. The underlying mechanisms are complex and largely elusive. Currently, there are several ongoing clinical trials based on the use of activated invariant natural killer T (iNKT) cells. The potential cardiotoxicity commonly associated with this particular immunotherapy has yet been carefully evaluated. The present study aims to determine the effect of activated iNKT cells on normal and β-adrenergic agonist (isoproterenol, ISO)-stimulated hearts. Mice were treated with iNKT stimulants, α-galactosylceramide (αGC) or its analog OCH, respectively, to determine their effect on ISO-induced cardiac injury. We showed that administration of αGC (activating both T helper type 1 (Th1)- and T helper type 2 (Th2)-liked iNKT cells) significantly accelerated the progressive cardiac injury, leading to enhanced cardiac hypertrophy and cardiac fibrosis with prominent increases in collagen deposition and TGF-β1, IL-6, and alpha smooth muscle actin expression. In contrast to αGC, OCH (mainly activating Th2-liked iNKT cells) significantly attenuated the progression of cardiac injury and cardiac inflammation induced by repeated infusion of ISO. Flow cytometry analysis revealed that αGC promoted inflammatory macrophage infiltration in the heart, while OCH was able to restrain the infiltration. In vitro coculture of αGC- or OCH-pretreated primary peritoneal macrophages with primary cardiac fibroblasts confirmed the profibrotic effect of αGC and the antifibrotic effect of OCH. Our results demonstrate that activating both Th1- and Th2-liked iNKT cells is cardiotoxic, while activating Th2-liked iNKT cells is likely cardiac protective, which has implied key differences among subpopulations of iNKT cells in their response to cardiac pathological stimulation.

    Topics: Animals; Cardiomegaly; Cardiotonic Agents; Cytokines; Fibrosis; Galactosylceramides; Glycolipids; Inflammation; Isoproterenol; Lymphocyte Activation; Macrophages; Male; Mice, Inbred C57BL; Natural Killer T-Cells

2020
CD1d-dependent natural killer T cells attenuate angiotensin II-induced cardiac remodelling via IL-10 signalling in mice.
    Cardiovascular research, 2019, 01-01, Volume: 115, Issue:1

    CD1d is a member of the cluster of differentiation 1 (CD1) family of glycoproteins expressed on the surface of various antigen-presenting cells, which is recognized by natural killer T (NKT) cells. CD1d-dependent NKT cells play an important role in immune-mediated diseases; but the role of these cells in regulating cardiac remodelling remains unknown.. Cardiac remodelling was induced by angiotensin (Ang) II infusion for 2 weeks. Ang II-induced increase in hypertension, cardiac performance, hypertrophy and fibrosis, inflammatory response, and activation of the NF-kB and TGF-β1/Smad2/3 pathways was significantly aggravated in CD1d knockout (CD1dko) mice compared with wild-type (WT) mice, but these effects were markedly abrogated in WT mice treated with α-galactosylceramide (αGC), a specific activator of NKT cells. Adoptive transfer of CD1dko bone marrow cells to WT mice further confirmed the deleterious effect of CD1dko. Moreover, IL-10 expression was significantly decreased in CD1dko hearts but increased in αGC-treated mice. Co-culture experiments revealed that CD1dko dendritic cells significantly reduced IL-10 mRNA expression from NKT cells. Administration of recombinant murine IL-10 to CD1dko mice improved hypertension, cardiac performance, and adverse cardiac remodelling induced by Ang II, and its cardioprotective effect was possibly associated with activation of STAT3, and inhibition of the TGF-β1 and NF-kB pathways.. These findings revealed a previously undefined role for CD1d-dependent NKT cells in Ang II-induced cardiac remodelling, hence activation of NKT cells may be a novel therapeutic target for hypertensive cardiac disease.

    Topics: Adoptive Transfer; Angiotensin II; Animals; Antigens, CD1d; Cardiomegaly; Cells, Cultured; Coculture Techniques; Dendritic Cells; Disease Models, Animal; Fibrosis; Galactosylceramides; Hypertension; Inflammation Mediators; Interleukin-10; Male; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; Natural Killer T-Cells; NF-kappa B; Signal Transduction; STAT3 Transcription Factor; Transforming Growth Factor beta1; Ventricular Remodeling

2019